Tag Archives: health

Neurotechnology and Society (20102060) – Lifeboat

Posted: December 2, 2016 at 12:31 pm

by Lifeboat Foundation Scientific Advisory Board member Zack Lynch. Overview Society shapes and is shaped by advancing technology. To illuminate the important societal implications of the NBIC (nano-bio-info-cogno) convergence it is critical to place it within a broad historical context. History sharpens unique issues that require attention versus ones that have more obvious trajectories. By viewing history as a series of techno-economic waves with accompanying socio-political responses, it is possible to begin to understand how NBIC technologies will have an impact on society. Waves of Techno-economic Change Since the time of the Industrial Revolution there has been a relatively consistent pattern of 50-year waves of techno-economic change. We are currently nearing the end of the fifth wave of information technology diffusion, while a sixth wave is emerging with converging advancements across the NBIC (nano-bio-info-cogno) space, making possible neurotechnology, the set of tools that can influence the human central nervous system, especially the brain. Each wave consists of a new group of technologies that make it possible to solve problems once thought intractable. The first wave, the water mechanization wave (17701830) in England, transformed productivity by replacing handcrafted production with water-powered machine-o-facture. The second wave (18201880), powered by a massive iron railroad build-out, accelerated the distribution of goods and services to distant markets. The electrification wave (18701920) made possible new metal alloys that created the foundation of the modern city. The development of skyscrapers, electric elevators, light bulbs, telephones, and subways were all a result of the new electricity infrastructure. At the same time, new techniques for producing inexpensive steel emerged, revamping the railroad systems, and making large-scale construction projects possible. The fourth wave (19101970), ushered in by inexpensive oil, motorized the industrial economy, making the inexpensive transportation of goods and services available to the masses. The most recent wave, the information technology wave (19602020), has made it possible to collect, analyze, and disseminate data, transforming our ability to track and respond to an ever-changing world. Driven by the microprocessors capacity to compute and communicate data at increasingly exponential rates, the current wave is the primary generator of economic and social change today. The nascent neurotechnology wave (20102060) is being accelerated by the development of nanobiochips and brain-imaging technologies that will make biological and neurological analysis accurate and inexpensive. Nanobiochips that can perform the basic bio-analysis functions (genomic, proteomic, biosimulation, and microfluidics) at a low cost will transform neurological analysis in a very similar fashion as the microprocessor did for data. Nano-imaging techniques will also play a vital role in making the analysis of neuro-molecular level events possible. When data from advanced biochips and brain imaging are combined they will accelerate the development of neurotechnology, the set of tools that can influence the human central nervous system, especially the brain. Neurotechnology will be used for therapeutic ends and to enable people to consciously improve emotional stability, enhance cognitive clarity, and extend sensory experiences. Techno-economic waves have pervasive effects throughout the economy and society. New low-cost inputs create new product sectors. They shift competitive behavior across the economy, as older sectors reinterpret how they create value. New low-cost inputs become driving sectors in their own right (e.g., canals, coal, electricity, oil, microchips, biochips). When combined with complementary technologies, each new low-cost input stimulates the development of new sectors (e.g., cotton textiles, railroads, electric products, automobiles, computers, neurofinance). Technological waves, because they embody a major jump up in productivity, open up an unusually wide range of investment and profit opportunities, leading to sustained rates of economic growth. Table 1. Six long waves of techno-economical development Long Wave Years New Inputs Driving Sector New Sectors Mechanization 17701830 Canals, water power Agriculture, cotton spinning Iron tools, canal transportation Railroadization 18201880 Coal, iron, steam power Railroads, locomotives, machine tools Steam shipping, telegraphy Electrification 18701920 Electricity, steel, copper Steel products, electricity Construction, precision machine tools Motorization 19101970 Oil Automobile, oil refining Aircraft, construction, services Information 19602020 Microprocessor Microchips, computers Networking, global finance, e-commerce Neurotechnology 20102060 Biochip, brain imaging, ??? Biotechnology, nanotechnology Neuroceuticals, bio-education Neurotechnology Like any new technology, neurotechnology represents both promises and problems. On the upside, neurotechnology represents new cures for mental illness, new opportunities for economic growth and a potential flowering of artistic expression. These benefits are countered by the potential use of neurotechnology for coercive purposes or its use as neuroweapons that can selectively erase memories. The diffusion of the neurotechnology will have an impact on businesses, politics and human culture in the following ways: New Industries: As brain imaging advances, neuromarketing will become a significant growth sector as the trillion-per-year advertising and marketing industries leverage brain scanning technology to better understand how and why people react to different market campaigns. Neurotechnology will also have an impact on education. As more people live longer and global competition intensifies, people will need to learn new skills throughout their lives. Regulated neuroceuticals represent the tools workers will use to succeed at continuous education. Adult neuroeducation will emerge as a significant industry, teaching individuals how to leverage neuroceuticals to acquire knowledge faster. Using cogniceuticals to increase memory retention, emoticeuticals to decrease stress, and sensoceuticals to add a meaningful pleasure gradient, neuroeducation will allow people to acquire and retain information faster. Imagine learning Arabic in one year rather than ten, or calculus in eight weeks. New Products: For example, neuroceuticals that can temporarily improve different aspects of mental health will become possible. Unlike todays psychopharmaceuticals, neuroceuticals are neuromodulators that have high efficacy and negligible side effects. By being able to target multiple subreceptors in specific neural circuits, neuroceuticals will create the possibility for dynamic intracellular regulation of an individuals neurochemistry. Neuroceuticals will be used for therapy and improvement. Neuroceuticals can be categorized into three broad groups cogniceuticals that focus on decision-making, learning, attention, and memory processes; emoticeuticals that influence feelings, moods, motivation, and awareness; and sensoceuticals that can restore and extend the capacity of our senses, allowing people to see, smell, taste, and hear in different ways. Competitive Advantage: Mental health is the ultimate competitive weapon. Mental health underpins communication, creativity and employee productivity. Individuals who use neurotechnology to understand how their emotions affect their financial decisions will become more productive and will attain neurocompetitive advantage. Neurotechnology-enabled traders will be equipped with emotional forecasting systems that provide them with real-time neurofeedback on their expected emotional bias for a given trade. To further reduce forecasting error, hormone-triggered emoticeuticals will keep traders from entering hot states, where they are known to make less accurate decisions. While some countries may choose to ban them, performance-enabling neuroceuticals will emerge as significant productivity tools. Public Policy: Neuroethicists are already confronting issues of brain privacy and cognitive liberty. As the competitive edge provided by neurotechnology becomes apparent, the ethical debate will evolve into a discussion of the right to enable individuals to use these new tools to improve themselves vs. uneven access to what others will describe as unfair performance improvement. In the legislative arena the competitive necessity of using these new tools will cause great concern over whether or not they will be required in order to just compete in tomorrows global economy. Mental Health: Today, five of the ten leading causes of disability worldwide major depression, schizophrenia, bipolar disorders, substance abuse, and obsessive-compulsive disorders are mental issues. These problems are as relevant in developing countries as they are in rich ones. And all predictions point toward a dramatic increase in mental illnesses as people live longer. New treatments for mental disorders are driving neurotechnologys early development. By 2020, biochips will have radically altered the drug development process, reducing the time to develop new therapies from 15 to 2 years while slashing the cost of drug development from $800 million to $10 million. In addition, entirely novel ways to treat disease at the molecular level will extend life expectancy and improve mental health. New Behaviors: Because our mental perspective slants our thinking, self-reflection and recollection of events, even a slight shift in human perception, will alter how people learn, feel, and react to personal problems, economic crises, and cultural rhetoric. When humans can better control their emotions, how will this affect personal relationships, political opinion and cultural beliefs? When we can enhance memory recall and accelerate learning, how will this influence competitive advantage in the workplace? As we can safely extend our sense of sight, hearing and taste, what might this mean for artistic exploration and human happiness? Patterns in the Location of Production: India and China will likely develop regional clusters of neurotechnology firms as political and cultural views on human testing create the necessary conditions for technological experimentation and development. Conclusion By viewing recent history as a series of techno-economic waves ushered in by a new low-cost input, it is possible to see that neurotechnology will lead to substantial economic, political, and social change. Building on advances in brain science and biotechnology, neurotechnology, the set of tools that influence the human brain, will allow people to experience life in ways that are currently unattainable. Neurotechnology will enable people to consciously improve emotional stability, enhance cognitive clarity, and extend sensory experiences. As people begin to experience life less constrained by ones evolutionarily influenced brain chemistry, neurotechnology will give rise to a new type of human society, a post-industrial, post-informational, neurosociety.


Neurotechnology and Society (20102060) – Lifeboat

Posted in Neurotechnology | Comments Off on Neurotechnology and Society (20102060) – Lifeboat

Johns Hopkins University | Coursera

Posted: at 12:31 pm

Statistics for Genomic Data Science

Starts Dec 19, 2016

Introduction to Systematic Review and Meta-Analysis

Starts Nov 28, 2016

Principles of fMRI 2

Starts Nov 28, 2016

Systems Thinking In Public Health

Starts Dec 12, 2016

Advanced Linear Models for Data Science 1: Least Squares

Starts Nov 28, 2016

Introduction to Neurohacking In R

Starts Dec 12, 2016

Building Data Visualization Tools

Starting December 12th, 2016

Design and Interpretation of Clinical Trials

Starts Dec 05, 2016

Ruby on Rails Web Services and Integration with MongoDB

Starts Dec 05, 2016

Rails with Active Record and Action Pack

Starts Dec 05, 2016

Major Depression in the Population: A Public Health Approach

Starts Dec 05, 2016

Introduction to Genomic Technologies

Starts Dec 19, 2016

Genomic Data Science Capstone

Starts Dec 05, 2016

R Programming Capstone

Starting January 18th, 2016

Training and Learning Programs for Volunteer Community Health Workers

Starts Jan 16, 2017

Mathematical Biostatistics Boot Camp 2

Starts Dec 19, 2016

Reproducible Research

Starts Nov 28, 2016

Statistical Inference

Starts Nov 28, 2016

The Data Scientists Toolbox

Starts Nov 28, 2016

Single Page Web Applications with AngularJS

Starts Dec 05, 2016

Exploratory Data Analysis

Starts Nov 28, 2016

Health for All Through Primary Health Care

Starts Dec 25, 2016

Developing Data Products

Starts Nov 28, 2016

Getting and Cleaning Data

Starts Nov 28, 2016

Ruby on Rails: An Introduction

Starts Dec 05, 2016

Introduction to the Biology of Cancer

Starts Dec 05, 2016

Data Science in Real Life

Starts Nov 28, 2016

Statistical Reasoning for Public Health 2: Regression Methods

Starts Nov 28, 2016

HTML, CSS, and Javascript for Web Developers

Starts Dec 05, 2016

Statistical Reasoning for Public Health 1: Estimation, Inference, & Interpretation

Starts Jan 16, 2017

Understanding Cancer Metastasis

Starts Dec 12, 2016

Systems Science and Obesity

Starts Nov 28, 2016

Data Science Capstone

Starts Feb 06, 2017

Command Line Tools for Genomic Data Science

Starts Dec 19, 2016

The R Programming Environment

Starts Nov 28, 2016

Psychological First Aid

Starts Dec 12, 2016

Mathematical Biostatistics Boot Camp 1

Starts Dec 19, 2016

R Programming

Starts Nov 28, 2016

Building R Packages

Starts Nov 28, 2016

Capstone: Photo Tourist Web Application

Starting January 17, 2017

Confronting Gender Based Violence: Global Lessons for Healthcare Workers

Starts Jan 09, 2017

Community Change in Public Health

Starts Nov 28, 2016

Managing Data Analysis

Starts Nov 28, 2016

Principles of fMRI 1

Starts Dec 19, 2016

Advanced R Programming

Starts Nov 28, 2016

Chemicals and Health

Starts Dec 26, 2016

Python for Genomic Data Science

Starts Dec 19, 2016

Advanced Linear Models for Data Science 2: Statistical Linear Models

Starts Dec 05, 2016

Algorithms for DNA Sequencing

Starts Dec 19, 2016

Practical Machine Learning

Starts Nov 28, 2016

Go here to see the original:

Johns Hopkins University | Coursera

Posted in Neurohacking | Comments Off on Johns Hopkins University | Coursera

Alternative medicine – Wikipedia

Posted: November 29, 2016 at 1:27 am

Alternative medicine or fringe medicine are practices claimed to have the healing effects of medicine but are disproven, unproven, impossible to prove, or only harmful. Alternative therapies or diagnoses are not part of medicine or science-based healthcare systems. Alternative medicine consists of a wide variety of practices, products, and therapiesranging from those that are biologically plausible but not well tested, to those with known harmful and toxic effects. Contrary to popular belief, significant expense is paid in testing alternative medicine, including over $2.5 billion spent by the United States government, with almost none showing any effect beyond that of false treatment. Perceived effects of alternative medicine are caused by placebo, decreased effects of functional treatment (and therefor also decreased side-effects), and regression toward the mean where improvement that would have occurred anyway is credited to alternative therapies. Alternative medicine is not the same as experimental medicine.

Alternative medicine has grown in popularity and is used by a significant percentage of the population in many countries. While it has extensively rebranded itself: from quackery to complementary or integrative medicineit promotes essentially the same practices. Newer proponents often suggest alternative medicine be used together with functional medical treatment, in a belief that it “complements” (improves the effect of, or mitigates the side effects of) the treatment. However, significant drug interactions caused by alternative therapies may instead negatively influence treatments, making them less effective, notably cancer therapy. Despite it being illegal to market alternative therapies for any type of cancer treatment in most of the developed world, many cancer patients use them. In the UK complementary therapies are commonly made available to cancer patients.[1][2]

Alternative medical diagnoses and treatments are not included in the science-based curriculum taught in medical schools, and are not used in medical practice where treatments are based on scientific knowledge. Alternative therapies are often based on religion, tradition, superstition, belief in supernatural energies, pseudoscience, errors in reasoning, propaganda, or fraud. Regulation and licensing of alternative medicine and health care providers varies between and within countries.

Alternative medicine has been criticized for being based on misleading statements, quackery, pseudoscience, antiscience, fraud, or poor scientific methodology. Promoting alternative medicine has been called dangerous and unethical. Testing alternative medicine that have no scientific basis has been called a waste of scarce medical research resources. Critics have said “there is really no such thing as alternative medicine, just medicine that works and medicine that doesn’t”, and the problem is not only that it does not work, but that the “underlying logic is magical, childish or downright absurd”. There have also been calls that the concept of any alternative medicine that works is paradoxical, as any treatment proven to work is simply “medicine”.

Practitioners of complementary medicine usually discuss and advise patients as to available alternative therapies. Patients often express interest in mind-body complementary therapies because they offer a non-drug approach to treating some health conditions.[3][clarification needed]

In addition to the social-cultural underpinnings of the popularity of alternative medicine, there are several psychological issues that are critical to its growth. One of the most critical is the placebo effecta well-established observation in medicine.[4] Related to it are similar psychological effects, such as the will to believe,[5]cognitive biases that help maintain self-esteem and promote harmonious social functioning,[5] and the post hoc, ergo propter hoc fallacy.[5]

CAM’s popularity may be related to other factors that Edzard Ernst mentioned in an interview in The Independent:

Why is it so popular, then? Ernst blames the providers, customers and the doctors whose neglect, he says, has created the opening into which alternative therapists have stepped. “People are told lies. There are 40 million websites and 39.9 million tell lies, sometimes outrageous lies. They mislead cancer patients, who are encouraged not only to pay their last penny but to be treated with something that shortens their lives. “At the same time, people are gullible. It needs gullibility for the industry to succeed. It doesn’t make me popular with the public, but it’s the truth.[6]

Paul Offit proposed that “alternative medicine becomes quackery” in four ways: by recommending against conventional therapies that are helpful, promoting potentially harmful therapies without adequate warning, draining patients’ bank accounts, or by promoting “magical thinking.”[7]

In a paper published in October 2010 entitled The public’s enthusiasm for complementary and alternative medicine amounts to a critique of mainstream medicine, Ernst described these views in greater detail and concluded:

[CAM] is popular. An analysis of the reasons why this is so points towards the therapeutic relationship as a key factor. Providers of CAM tend to build better therapeutic relationships than mainstream healthcare professionals. In turn, this implies that much of the popularity of CAM is a poignant criticism of the failure of mainstream healthcare. We should consider it seriously with a view of improving our service to patients.[8]

Authors have speculated on the socio-cultural and psychological reasons for the appeal of alternative medicines among the minority using them in lieu of conventional medicine. There are several socio-cultural reasons for the interest in these treatments centered on the low level of scientific literacy among the public at large and a concomitant increase in antiscientific attitudes and new age mysticism.[5] Related to this are vigorous marketing[9] of extravagant claims by the alternative medical community combined with inadequate media scrutiny and attacks on critics.[5][10]

There is also an increase in conspiracy theories toward conventional medicine and pharmaceutical companies, mistrust of traditional authority figures, such as the physician, and a dislike of the current delivery methods of scientific biomedicine, all of which have led patients to seek out alternative medicine to treat a variety of ailments.[10] Many patients lack access to contemporary medicine, due to a lack of private or public health insurance, which leads them to seek out lower-cost alternative medicine.[11] Medical doctors are also aggressively marketing alternative medicine to profit from this market.[9]

Patients can be averse to the painful, unpleasant, and sometimes-dangerous side effects of biomedical treatments. Treatments for severe diseases such as cancer and HIV infection have well-known, significant side-effects. Even low-risk medications such as antibiotics can have potential to cause life-threatening anaphylactic reactions in a very few individuals. Many medications may cause minor but bothersome symptoms such as cough or upset stomach. In all of these cases, patients may be seeking out alternative treatments to avoid the adverse effects of conventional treatments.[5][10]

It is loosely as a defined set of products, practices, and theories that are believed or perceived by their users to have the healing effects of medicine,[n 1][n 2] but whose effectiveness has not been clearly established using scientific methods,[n 1][n 3][15][16][17][18] or whose theory and practice is not part of biomedicine,[n 2][n 4][n 5][n 6] or whose theories or practices are directly contradicted by scientific evidence or scientific principles used in biomedicine.[15][16][22] “Biomedicine” or “medicine” is that part of medical science that applies principles of biology, physiology, molecular biology, biophysics, and other natural sciences to clinical practice, using scientific methods to establish the effectiveness of that practice. Unlike medicine,[n 4] an alternative product or practice does not originate from using scientific methodology, but may instead be based on testimonials, religion, tradition, superstition, belief in supernatural energies, pseudoscience, errors in reasoning, propaganda, fraud, or other unscientific sources.[n 3][12][15][16]

In General Guidelines for Methodologies on Research and Evaluation of Traditional Medicine, published in 2000 by the World Health Organization (WHO), complementary and alternative medicine were defined as a broad set of health care practices that are not part of that country’s own tradition and are not integrated into the dominant health care system.[23]

The expression also refers to a diverse range of related and unrelated products, practices, and theories ranging from biologically plausible practices and products and practices with some evidence, to practices and theories that are directly contradicted by basic science or clear evidence, and products that have been conclusively proven to be ineffective or even toxic and harmful.[n 2][25][26]

The terms-Alternative medicine, complementary medicine, integrative medicine, holistic medicine, natural medicine, unorthodox medicine, fringe medicine, unconventional medicine, and new age medicine are used interchangeably as having the same meaning and are almost synonymous in some contexts,[27][28][29][30] but may have different meanings in some rare cases.

The meaning of the term “alternative” in the expression “alternative medicine”, is not that it is an effective alternative to medical science, although some alternative medicine promoters may use the loose terminology to give the appearance of effectiveness.[15][31] Loose terminology may also be used to suggest meaning that a dichotomy exists when it does not, e.g., the use of the expressions “western medicine” and “eastern medicine” to suggest that the difference is a cultural difference between the Asiatic east and the European west, rather than that the difference is between evidence-based medicine and treatments that don’t work.[15]

Complementary medicine (CM) or integrative medicine (IM) is when alternative medicine is used together with functional medical treatment, in a belief that it improves the effect of treatments.[n 7][12][33][34][35] However, significant drug interactions caused by alternative therapies may instead negatively influence treatment, making treatments less effective, notably cancer therapy.[36][37] Both terms refer to use of alternative medical treatments alongside conventional medicine,[38][39][40] an example of which is use of acupuncture (sticking needles in the body to influence the flow of a supernatural energy), along with using science-based medicine, in the belief that the acupuncture increases the effectiveness or “complements” the science-based medicine.[40]

Allopathic medicine or allopathy is an expression commonly used by homeopaths and proponents of other forms of alternative medicine to refer to mainstream medicine. Specifically it refers to the use of pharmacologically active agents or physical interventions to treat or suppress symptoms or pathophysiologic processes of diseases or conditions.[41] The expression was coined in 1810 by the creator of homeopathy, Samuel Hahnemann (17551843).[42] In such circles, the expression “allopathic medicine” is still used to refer to “the broad category of medical practice that is sometimes called Western medicine, biomedicine, evidence-based medicine, or modern medicine” (see the article on scientific medicine).[43]

Use of the term remains common among homeopaths and has spread to other alternative medicine practices. The meaning implied by the label has never been accepted by conventional medicine and is considered pejorative.[44] More recently, some sources have used the term “allopathic”, particularly American sources wishing to distinguish between Doctors of Medicine (MD) and Doctors of Osteopathic Medicine (DO) in the United States.[42][45] William Jarvis, an expert on alternative medicine and public health,[46] states that “although many modern therapies can be construed to conform to an allopathic rationale (e.g., using a laxative to relieve constipation), standard medicine has never paid allegiance to an allopathic principle” and that the label “allopath” was from the start “considered highly derisive by regular medicine”.[47]

Many conventional medical treatments clearly do not fit the nominal definition of allopathy, as they seek to prevent illness, or remove the cause of an illness by acting on the etiology of disease.[48][49]

CAM is an abbreviation of complementary and alternative medicine.[50][51] It has also been called sCAM or SCAM with the addition of “so-called” or “supplements”.[52][53] The words balance and holism are often used, claiming to take into account a “whole” person, in contrast to the supposed reductionism of medicine. Due to its many names the field has been criticized for intense rebranding of what are essentially the same practices: as soon as one name is declared synonymous with quackery, a new name is chosen.[27]

It refers to the pre-scientific practices of a culture, contrary to what is traditionally practiced in cultures where medical science dominates.

“Eastern medicine” typically refers to the traditional medicines of Asia where conventional bio-medicine penetrated much later.

Prominent members of the science[7][54] and biomedical science community[14] assert that it is not meaningful to define an alternative medicine that is separate from a conventional medicine, that the expressions “conventional medicine”, “alternative medicine”, “complementary medicine”, “integrative medicine”, and “holistic medicine” do not refer to any medicine at all.[7][14][54][55]

Others in both the biomedical and CAM communities point out that CAM cannot be precisely defined because of the diversity of theories and practices it includes, and because the boundaries between CAM and biomedicine overlap, are porous, and change. The expression “complementary and alternative medicine” (CAM) resists easy definition because the health systems and practices it refers to are diffuse, and its boundaries poorly defined.[25][n 8] Healthcare practices categorized as alternative may differ in their historical origin, theoretical basis, diagnostic technique, therapeutic practice and in their relationship to the medical mainstream. Some alternative therapies, including traditional Chinese medicine (TCM) and Ayurveda, have antique origins in East or South Asia and are entirely alternative medical systems;[60] others, such as homeopathy and chiropractic, have origins in Europe or the United States and emerged in the eighteenth and nineteenth centuries. Some, such as osteopathy and chiropractic, employ manipulative physical methods of treatment; others, such as meditation and prayer, are based on mind-body interventions. Treatments considered alternative in one location may be considered conventional in another.[63] Thus, chiropractic is not considered alternative in Denmark and likewise osteopathic medicine is no longer thought of as an alternative therapy in the United States.[63]

Critics say the expression is deceptive because it implies there is an effective alternative to science-based medicine, and that complementary is deceptive because it implies that the treatment increases the effectiveness of (complements) science-based medicine, while alternative medicines that have been tested nearly always have no measurable positive effect compared to a placebo.[15][64][65][66]

One common feature of all definitions of alternative medicine is its designation as “other than” conventional medicine. For example, the widely referenced descriptive definition of complementary and alternative medicine devised by the US National Center for Complementary and Integrative Health (NCCIH) of the National Institutes of Health (NIH), states that it is “a group of diverse medical and health care systems, practices, and products that are not generally considered part of conventional medicine.”[69] For conventional medical practitioners, it does not necessarily follow that either it or its practitioners would no longer be considered alternative.[n 9]

Some definitions seek to specify alternative medicine in terms of its social and political marginality to mainstream healthcare.[72] This can refer to the lack of support that alternative therapies receive from the medical establishment and related bodies regarding access to research funding, sympathetic coverage in the medical press, or inclusion in the standard medical curriculum.[72] In 1993, the British Medical Association (BMA), one among many professional organizations who have attempted to define alternative medicine, stated that it[n 10] referred to “…those forms of treatment which are not widely used by the conventional healthcare professions, and the skills of which are not taught as part of the undergraduate curriculum of conventional medical and paramedical healthcare courses.”[73] In a US context, an influential definition coined in 1993 by the Harvard-based physician,[74] David M. Eisenberg,[75] characterized alternative medicine “as interventions neither taught widely in medical schools nor generally available in US hospitals”.[76] These descriptive definitions are inadequate in the present-day when some conventional doctors offer alternative medical treatments and CAM introductory courses or modules can be offered as part of standard undergraduate medical training;[77] alternative medicine is taught in more than 50 per cent of US medical schools and increasingly US health insurers are willing to provide reimbursement for CAM therapies. In 1999, 7.7% of US hospitals reported using some form of CAM therapy; this proportion had risen to 37.7% by 2008.[79]

An expert panel at a conference hosted in 1995 by the US Office for Alternative Medicine (OAM),[80][n 11] devised a theoretical definition[80] of alternative medicine as “a broad domain of healing resources… other than those intrinsic to the politically dominant health system of a particular society or culture in a given historical period.”[82] This definition has been widely adopted by CAM researchers,[80] cited by official government bodies such as the UK Department of Health,[83] attributed as the definition used by the Cochrane Collaboration,[84] and, with some modification,[dubious discuss] was preferred in the 2005 consensus report of the US Institute of Medicine, Complementary and Alternative Medicine in the United States.[n 2]

The 1995 OAM conference definition, an expansion of Eisenberg’s 1993 formulation, is silent regarding questions of the medical effectiveness of alternative therapies.[85] Its proponents hold that it thus avoids relativism about differing forms of medical knowledge and, while it is an essentially political definition, this should not imply that the dominance of mainstream biomedicine is solely due to political forces.[85] According to this definition, alternative and mainstream medicine can only be differentiated with reference to what is “intrinsic to the politically dominant health system of a particular society of culture”.[86] However, there is neither a reliable method to distinguish between cultures and subcultures, nor to attribute them as dominant or subordinate, nor any accepted criteria to determine the dominance of a cultural entity.[86] If the culture of a politically dominant healthcare system is held to be equivalent to the perspectives of those charged with the medical management of leading healthcare institutions and programs, the definition fails to recognize the potential for division either within such an elite or between a healthcare elite and the wider population.[86]

Normative definitions distinguish alternative medicine from the biomedical mainstream in its provision of therapies that are unproven, unvalidated, or ineffective and support of theories with no recognized scientific basis. These definitions characterize practices as constituting alternative medicine when, used independently or in place of evidence-based medicine, they are put forward as having the healing effects of medicine, but are not based on evidence gathered with the scientific method.[12][14][38][39][69][88] Exemplifying this perspective, a 1998 editorial co-authored by Marcia Angell, a former editor of the New England Journal of Medicine, argued that:

This line of division has been subject to criticism, however, as not all forms of standard medical practice have adequately demonstrated evidence of benefit, [n 4][89] and it is also unlikely in most instances that conventional therapies, if proven to be ineffective, would ever be classified as CAM.[80]

Similarly, the public information website maintained by the National Health and Medical Research Council (NHMRC) of the Commonwealth of Australia uses the acronym “CAM” for a wide range of health care practices, therapies, procedures and devices not within the domain of conventional medicine. In the Australian context this is stated to include acupuncture; aromatherapy; chiropractic; homeopathy; massage; meditation and relaxation therapies; naturopathy; osteopathy; reflexology, traditional Chinese medicine; and the use of vitamin supplements.[91]

The Danish National Board of Health’s “Council for Alternative Medicine” (Sundhedsstyrelsens Rd for Alternativ Behandling (SRAB)), an independent institution under the National Board of Health (Danish: Sundhedsstyrelsen), uses the term “alternative medicine” for:

Proponents of an evidence-base for medicine[n 12][94][95][96][97] such as the Cochrane Collaboration (founded in 1993 and from 2011 providing input for WHO resolutions) take a position that all systematic reviews of treatments, whether “mainstream” or “alternative”, ought to be held to the current standards of scientific method.[98] In a study titled Development and classification of an operational definition of complementary and alternative medicine for the Cochrane Collaboration (2011) it was proposed that indicators that a therapy is accepted include government licensing of practitioners, coverage by health insurance, statements of approval by government agencies, and recommendation as part of a practice guideline; and that if something is currently a standard, accepted therapy, then it is not likely to be widely considered as CAM.[80]

A United States government agency, the National Center on Complementary and Integrative Health (NCCIH), created its own classification system for branches of complementary and alternative medicine that divides them into five major groups. These groups have some overlap, and distinguish two types of energy medicine: veritable which involves scientifically observable energy (including magnet therapy, colorpuncture and light therapy) and putative, which invokes physically undetectable or unverifiable energy.[99]

The NCCIH classification system is –

Alternative medicine consists of a wide range of health care practices, products, and therapies. The shared feature is a claim to heal that is not based on the scientific method. Alternative medicine practices are diverse in their foundations and methodologies.[69] Alternative medicine practices may be classified by their cultural origins or by the types of beliefs upon which they are based.[12][15][22][69] Methods may incorporate or be based on traditional medicinal practices of a particular culture, folk knowledge, supersition, spiritual beliefs, belief in supernatural energies (antiscience), pseudoscience, errors in reasoning, propaganda, fraud, new or different concepts of health and disease, and any bases other than being proven by scientific methods.[12][15][16][22] Different cultures may have their own unique traditional or belief based practices developed recently or over thousands of years, and specific practices or entire systems of practices.

Alternative medicine, such as using naturopathy or homeopathy in place of conventional medicine, is based on belief systems not grounded in science.[69]

Alternative medical systems may be based on traditional medicine practices, such as traditional Chinese medicine (TCM), Ayurveda in India, or practices of other cultures around the world.[69] Some useful applications of traditional medicines have been researched and accepted within ordinary medicine, however the underlying belief systems are seldom scientific and are not accepted.

Bases of belief may include belief in existence of supernatural energies undetected by the science of physics, as in biofields, or in belief in properties of the energies of physics that are inconsistent with the laws of physics, as in energy medicine.[69]

Substance based practices use substances found in nature such as herbs, foods, non-vitamin supplements and megavitamins, animal and fungal products, and minerals, including use of these products in traditional medical practices that may also incorporate other methods.[69][121][122] Examples include healing claims for nonvitamin supplements, fish oil, Omega-3 fatty acid, glucosamine, echinacea, flaxseed oil, and ginseng.[123]Herbal medicine, or phytotherapy, includes not just the use of plant products, but may also include the use of animal and mineral products.[121] It is among the most commercially successful branches of alternative medicine, and includes the tablets, powders and elixirs that are sold as “nutritional supplements”.[121] Only a very small percentage of these have been shown to have any efficacy, and there is little regulation as to standards and safety of their contents.[121] This may include use of known toxic substances, such as use of the poison lead in traditional Chinese medicine.[123]

The history of alternative medicine may refer to the history of a group of diverse medical practices that were collectively promoted as “alternative medicine” beginning in the 1970s, to the collection of individual histories of members of that group, or to the history of western medical practices that were labeled “irregular practices” by the western medical establishment.[15][124][125][126][127] It includes the histories of complementary medicine and of integrative medicine. Before the 1970s, western practitioners that were not part of the increasingly science-based medical establishment were referred to “irregular practitioners”, and were dismissed by the medical establishment as unscientific and as practicing quackery.[124][125] Until the 1970’s, irregular practice became increasingly marginalized as quackery and fraud, as western medicine increasingly incorporated scientific methods and discoveries, and had a corresponding increase in success of its treatments.[126] In the 1970s, irregular practices were grouped with traditional practices of nonwestern cultures and with other unproven or disproven practices that were not part of biomedicine, with the entire group collectively marketed and promoted under the single expression “alternative medicine”.[15][124][125][126][128]

Use of alternative medicine in the west began to rise following the counterculture movement of the 1960s, as part of the rising new age movement of the 1970s.[15][129][130] This was due to misleading mass marketing of “alternative medicine” being an effective “alternative” to biomedicine, changing social attitudes about not using chemicals and challenging the establishment and authority of any kind, sensitivity to giving equal measure to beliefs and practices of other cultures (cultural relativism), and growing frustration and desperation by patients about limitations and side effects of science-based medicine.[15][125][126][127][128][130][131] At the same time, in 1975, the American Medical Association, which played the central role in fighting quackery in the United States, abolished its quackery committee and closed down its Department of Investigation.[124]:xxi[131] By the early to mid 1970s the expression “alternative medicine” came into widespread use, and the expression became mass marketed as a collection of “natural” and effective treatment “alternatives” to science-based biomedicine.[15][131][132][133] By 1983, mass marketing of “alternative medicine” was so pervasive that the British Medical Journal (BMJ) pointed to “an apparently endless stream of books, articles, and radio and television programmes urge on the public the virtues of (alternative medicine) treatments ranging from meditation to drilling a hole in the skull to let in more oxygen”.[131] In this 1983 article, the BMJ wrote, “one of the few growth industries in contemporary Britain is alternative medicine”, noting that by 1983, “33% of patients with rheumatoid arthritis and 39% of those with backache admitted to having consulted an alternative practitioner”.[131]

By about 1990, the American alternative medicine industry had grown to a $27 billion per year, with polls showing 30% of Americans were using it.[130][134] Moreover, polls showed that Americans made more visits for alternative therapies than the total number of visits to primary care doctors, and American out-of-pocket spending (non-insurance spending) on alternative medicine was about equal to spending on biomedical doctors.[124]:172 In 1991, Time magazine ran a cover story, “The New Age of Alternative Medicine: Why New Age Medicine Is Catching On”.[130][134] In 1993, the New England Journal of Medicine reported one in three Americans as using alternative medicine.[130] In 1993, the Public Broadcasting System ran a Bill Moyers special, Healing and the Mind, with Moyers commenting that “…people by the tens of millions are using alternative medicine. If established medicine does not understand that, they are going to lose their clients.”[130]

Another explosive growth began in the 1990s, when senior level political figures began promoting alternative medicine, investing large sums of government medical research funds into testing alternative medicine, including testing of scientifically implausible treatments, and relaxing government regulation of alternative medicine products as compared to biomedical products.[15][124]:xxi[125][126][127][128][135][136] Beginning with a 1991 appropriation of $2 million for funding research of alternative medicine research, federal spending grew to a cumulative total of about $2.5 billion by 2009, with 50% of Americans using alternative medicine by 2013.[137][138]

In 1993, Britain’s Prince Charles, who claimed that homeopathy and other alternative medicine was an effective alternative to biomedicine, established The Prince’s Foundation for Integrated Health (FIH), as a charity to explore “how safe, proven complementary therapies can work in conjunction with mainstream medicine”.[139] The FIH received government funding through grants from Britain’s Department of Health.[139] In 2008, London’s The Times published a letter from Edzard Ernst that asked the FIH to recall two guides promoting alternative medicine, saying: “the majority of alternative therapies appear to be clinically ineffective, and many are downright dangerous.” In 2010, Brittan’s FIH closed after allegations of fraud and money laundering led to arrests of its officials.[139]

In 2004, modifications of the European Parliament’s 2001 Directive 2001/83/EC, regulating all medicine products, were made with the expectation of influencing development of the European market for alternative medicine products.[140] Regulation of alternative medicine in Europe was loosened with “a simplified registration procedure” for traditional herbal medicinal products.[140][141] Plausible “efficacy” for traditional medicine was redefined to be based on long term popularity and testimonials (“the pharmacological effects or efficacy of the medicinal product are plausible on the basis of long-standing use and experience.”), without scientific testing.[140][141] The Committee on Herbal Medicinal Products (HMPC) was created within the European Medicines Agency in London (EMEA). A special working group was established for homeopathic remedies under the Heads of Medicines Agencies.[140]

Through 2004, alternative medicine that was traditional to Germany continued to be a regular part of the health care system, including homeopathy and anthroposophic medicine.[140] The German Medicines Act mandated that science-based medical authorities consider the “particular characteristics” of complementary and alternative medicines.[140] By 2004, homeopathy had grown to be the most used alternative therapy in France, growing from 16% of the population using homeopathic medicine in 1982, to 29% by 1987, 36% percent by 1992, and 62% of French mothers using homeopathic medicines by 2004, with 94.5% of French pharmacists advising pregnant women to use homeopathic remedies.[142] As of 2004[update], 100 million people in India depended solely on traditional German homeopathic remedies for their medical care.[143] As of 2010[update], homeopathic remedies continued to be the leading alternative treatment used by European physicians.[142] By 2005, sales of homeopathic remedies and anthroposophical medicine had grown to $930 million Euros, a 60% increase from 1995.[142][144]

Since 2009, according to Art. 118a of the Swiss Federal Constitution, the Swiss Confederation and the Cantons of Switzerland shall within the scope of their powers ensure that consideration is given to complementary medicine.[145]

By 2013, 50% of Americans were using CAM.[138] As of 2013[update], CAM medicinal products in Europe continued to be exempted from documented efficacy standards required of other medicinal products.[146]

Much of what is now categorized as alternative medicine was developed as independent, complete medical systems. These were developed long before biomedicine and use of scientific methods. Each system was developed in relatively isolated regions of the world where there was little or no medical contact with pre-scientific western medicine, or with each other’s systems. Examples are traditional Chinese medicine and the Ayurvedic medicine of India.

Other alternative medicine practices, such as homeopathy, were developed in western Europe and in opposition to western medicine, at a time when western medicine was based on unscientific theories that were dogmatically imposed by western religious authorities. Homeopathy was developed prior to discovery of the basic principles of chemistry, which proved homeopathic remedies contained nothing but water. But homeopathy, with its remedies made of water, was harmless compared to the unscientific and dangerous orthodox western medicine practiced at that time, which included use of toxins and draining of blood, often resulting in permanent disfigurement or death.[125]

Other alternative practices such as chiropractic and osteopathic manipulative medicine were developed in the United States at a time that western medicine was beginning to incorporate scientific methods and theories, but the biomedical model was not yet totally dominant. Practices such as chiropractic and osteopathic, each considered to be irregular practices by the western medical establishment, also opposed each other, both rhetorically and politically with licensing legislation. Osteopathic practitioners added the courses and training of biomedicine to their licensing, and licensed Doctor of Osteopathic Medicine holders began diminishing use of the unscientific origins of the field. Without the original nonscientific practices and theories, osteopathic medicine is now considered the same as biomedicine.

Further information: Rise of modern medicine

Until the 1970s, western practitioners that were not part of the medical establishment were referred to “irregular practitioners”, and were dismissed by the medical establishment as unscientific, as practicing quackery.[125] Irregular practice became increasingly marginalized as quackery and fraud, as western medicine increasingly incorporated scientific methods and discoveries, and had a corresponding increase in success of its treatments.

Dating from the 1970s, medical professionals, sociologists, anthropologists and other commentators noted the increasing visibility of a wide variety of health practices that had neither derived directly from nor been verified by biomedical science.[147] Since that time, those who have analyzed this trend have deliberated over the most apt language with which to describe this emergent health field.[147] A variety of terms have been used, including heterodox, irregular, fringe and alternative medicine while others, particularly medical commentators, have been satisfied to label them as instances of quackery.[147] The most persistent term has been alternative medicine but its use is problematic as it assumes a value-laden dichotomy between a medical fringe, implicitly of borderline acceptability at best, and a privileged medical orthodoxy, associated with validated medico-scientific norms.[148] The use of the category of alternative medicine has also been criticized as it cannot be studied as an independent entity but must be understood in terms of a regionally and temporally specific medical orthodoxy.[149] Its use can also be misleading as it may erroneously imply that a real medical alternative exists.[150] As with near-synonymous expressions, such as unorthodox, complementary, marginal, or quackery, these linguistic devices have served, in the context of processes of professionalisation and market competition, to establish the authority of official medicine and police the boundary between it and its unconventional rivals.[148]

An early instance of the influence of this modern, or western, scientific medicine outside Europe and North America is Peking Union Medical College.[151][n 14][n 15]

From a historical perspective, the emergence of alternative medicine, if not the term itself, is typically dated to the 19th century.[152] This is despite the fact that there are variants of Western non-conventional medicine that arose in the late-eighteenth century or earlier and some non-Western medical traditions, currently considered alternative in the West and elsewhere, which boast extended historical pedigrees.[148] Alternative medical systems, however, can only be said to exist when there is an identifiable, regularized and authoritative standard medical practice, such as arose in the West during the nineteenth century, to which they can function as an alternative.

During the late eighteenth and nineteenth centuries regular and irregular medical practitioners became more clearly differentiated throughout much of Europe and,[154] as the nineteenth century progressed, most Western states converged in the creation of legally delimited and semi-protected medical markets.[155] It is at this point that an “official” medicine, created in cooperation with the state and employing a scientific rhetoric of legitimacy, emerges as a recognizable entity and that the concept of alternative medicine as a historical category becomes tenable.[156]

As part of this process, professional adherents of mainstream medicine in countries such as Germany, France, and Britain increasingly invoked the scientific basis of their discipline as a means of engendering internal professional unity and of external differentiation in the face of sustained market competition from homeopaths, naturopaths, mesmerists and other nonconventional medical practitioners, finally achieving a degree of imperfect dominance through alliance with the state and the passage of regulatory legislation.[148][150] In the US the Johns Hopkins University School of Medicine, based in Baltimore, Maryland, opened in 1893, with William H. Welch and William Osler among the founding physicians, and was the first medical school devoted to teaching “German scientific medicine”.[157]

Buttressed by increased authority arising from significant advances in the medical sciences of the late 19th century onwardsincluding development and application of the germ theory of disease by the chemist Louis Pasteur and the surgeon Joseph Lister, of microbiology co-founded by Robert Koch (in 1885 appointed professor of hygiene at the University of Berlin), and of the use of X-rays (Rntgen rays)the 1910 Flexner Report called upon American medical schools to follow the model of the Johns Hopkins School of Medicine, and adhere to mainstream science in their teaching and research. This was in a belief, mentioned in the Report’s introduction, that the preliminary and professional training then prevailing in medical schools should be reformed, in view of the new means for diagnosing and combating disease made available the sciences on which medicine depended.[n 16][159]

Putative medical practices at the time that later became known as “alternative medicine” included homeopathy (founded in Germany in the early 19c.) and chiropractic (founded in North America in the late 19c.). These conflicted in principle with the developments in medical science upon which the Flexner reforms were based, and they have not become compatible with further advances of medical science such as listed in Timeline of medicine and medical technology, 19001999 and 2000present, nor have Ayurveda, acupuncture or other kinds of alternative medicine.[citation needed]

At the same time “Tropical medicine” was being developed as a specialist branch of western medicine in research establishments such as Liverpool School of Tropical Medicine founded in 1898 by Alfred Lewis Jones, London School of Hygiene & Tropical Medicine, founded in 1899 by Patrick Manson and Tulane University School of Public Health and Tropical Medicine, instituted in 1912. A distinction was being made between western scientific medicine and indigenous systems. An example is given by an official report about indigenous systems of medicine in India, including Ayurveda, submitted by Mohammad Usman of Madras and others in 1923. This stated that the first question the Committee considered was “to decide whether the indigenous systems of medicine were scientific or not”.[160][161]

By the later twentieth century the term ‘alternative medicine’ entered public discourse,[n 17][164] but it was not always being used with the same meaning by all parties. Arnold S. Relman remarked in 1998 that in the best kind of medical practice, all proposed treatments must be tested objectively, and that in the end there will only be treatments that pass and those that do not, those that are proven worthwhile and those that are not. He asked ‘Can there be any reasonable “alternative”?'[165] But also in 1998 the then Surgeon General of the United States, David Satcher,[166] issued public information about eight common alternative treatments (including acupuncture, holistic and massage), together with information about common diseases and conditions, on nutrition, diet, and lifestyle changes, and about helping consumers to decipher fraud and quackery, and to find healthcare centers and doctors who practiced alternative medicine.[167]

By 1990, approximately 60 million Americans had used one or more complementary or alternative therapies to address health issues, according to a nationwide survey in the US published in 1993 by David Eisenberg.[168] A study published in the November 11, 1998 issue of the Journal of the American Medical Association reported that 42% of Americans had used complementary and alternative therapies, up from 34% in 1990.[169] However, despite the growth in patient demand for complementary medicine, most of the early alternative/complementary medical centers failed.[170]

Mainly as a result of reforms following the Flexner Report of 1910[171]medical education in established medical schools in the US has generally not included alternative medicine as a teaching topic.[n 18] Typically, their teaching is based on current practice and scientific knowledge about: anatomy, physiology, histology, embryology, neuroanatomy, pathology, pharmacology, microbiology and immunology.[173] Medical schools’ teaching includes such topics as doctor-patient communication, ethics, the art of medicine,[174] and engaging in complex clinical reasoning (medical decision-making).[175] Writing in 2002, Snyderman and Weil remarked that by the early twentieth century the Flexner model had helped to create the 20th-century academic health center, in which education, research, and practice were inseparable. While this had much improved medical practice by defining with increasing certainty the pathophysiological basis of disease, a single-minded focus on the pathophysiological had diverted much of mainstream American medicine from clinical conditions that were not well understood in mechanistic terms, and were not effectively treated by conventional therapies.[176]

By 2001 some form of CAM training was being offered by at least 75 out of 125 medical schools in the US.[177] Exceptionally, the School of Medicine of the University of Maryland, Baltimore includes a research institute for integrative medicine (a member entity of the Cochrane Collaboration).[98][178] Medical schools are responsible for conferring medical degrees, but a physician typically may not legally practice medicine until licensed by the local government authority. Licensed physicians in the US who have attended one of the established medical schools there have usually graduated Doctor of Medicine (MD).[179] All states require that applicants for MD licensure be graduates of an approved medical school and complete the United States Medical Licensing Exam (USMLE).[179]

The British Medical Association, in its publication Complementary Medicine, New Approach to Good Practice (1993), gave as a working definition of non-conventional therapies (including acupuncture, chiropractic and homeopathy): “…those forms of treatment which are not widely used by the orthodox health-care professions, and the skills of which are not part of the undergraduate curriculum of orthodox medical and paramedical health-care courses.” By 2000 some medical schools in the UK were offering CAM familiarisation courses to undergraduate medical students while some were also offering modules specifically on CAM.[181]

In 1991, pointing to a need for testing because of the widespread use of alternative medicine without authoritative information on its efficacy, United States Senator Tom Harkin used $2 million of his discretionary funds to create the Office for the Study of Unconventional Medical Practices (OSUMP), later renamed to be the Office of Alternative Medicine (OAM).[124]:170[182][183] The OAM was created to be within the National Institute of Health (NIH), the scientifically prestigious primary agency of the United States government responsible for biomedical and health-related research.[124]:170[182][183] The mandate was to investigate, evaluate, and validate effective alternative medicine treatments, and alert the public as the results of testing its efficacy.[134][182][183][184]

Sen. Harkin had become convinced his allergies were cured by taking bee pollen pills, and was urged to make the spending by two of his influential constituents.[134][182][183] Bedell, a longtime friend of Sen. Harkin, was a former member of the United States House of Representatives who believed that alternative medicine had twice cured him of diseases after mainstream medicine had failed, claiming that cow’s milk colostrum cured his Lyme disease, and an herbal derivative from camphor had prevented post surgical recurrence of his prostate cancer.[124][134] Wiewel was a promoter of unproven cancer treatments involving a mixture of blood sera that the Food and Drug Administration had banned from being imported.[134] Both Bedell and Wiewel became members of the advisory panel for the OAM. The company that sold the bee pollen was later fined by the Federal Trade Commission for making false health claims about their bee-pollen products reversing the aging process, curing allergies, and helping with weight loss.[185]

In 1994, Sen. Harkin (D) and Senator Orrin Hatch (R) introduced the Dietary Supplement Health and Education Act (DSHEA).[186][187] The act reduced authority of the FDA to monitor products sold as “natural” treatments.[186] Labeling standards were reduced to allow health claims for supplements based only on unconfirmed preliminary studies that were not subjected to scientific peer review, and the act made it more difficult for the FDA to promptly seize products or demand proof of safety where there was evidence of a product being dangerous.[187] The Act became known as the “The 1993 Snake Oil Protection Act” following a New York Times editorial under that name.[186]

Senator Harkin complained about the “unbendable rules of randomized clinical trials”, citing his use of bee pollen to treat his allergies, which he claimed to be effective even though it was biologically implausible and efficacy was not established using scientific methods.[182][188] Sen. Harkin asserted that claims for alternative medicine efficacy be allowed not only without conventional scientific testing, even when they are biologically implausible, “It is not necessary for the scientific community to understand the process before the American public can benefit from these therapies.”[186] Following passage of the act, sales rose from about $4 billion in 1994, to $20 billion by the end of 2000, at the same time as evidence of their lack of efficacy or harmful effects grew.[186] Senator Harkin came into open public conflict with the first OAM Director Joseph M. Jacobs and OAM board members from the scientific and biomedical community.[183] Jacobs’ insistence on rigorous scientific methodology caused friction with Senator Harkin.[182][188][189] Increasing political resistance to the use of scientific methodology was publicly criticized by Dr. Jacobs and another OAM board member complained that “nonsense has trickled down to every aspect of this office…It’s the only place where opinions are counted as equal to data.”[182][188] In 1994, Senator Harkin appeared on television with cancer patients who blamed Dr. Jacobs for blocking their access to untested cancer treatment, leading Jacobs to resign in frustration.[182][188]

In 1995, Wayne Jonas, a promoter of homeopathy and political ally of Senator Harkin, became the director of the OAM, and continued in that role until 1999.[190] In 1997, the NCCAM budget was increased from $12 million to $20 million annually.[191] From 1990 to 1997, use of alternative medicine in the US increased by 25%, with a corresponding 50% increase in expenditures.[169] The OAM drew increasing criticism from eminent members of the scientific community with letters to the Senate Appropriations Committee when discussion of renewal of funding OAM came up.[124]:175 Nobel laureate Paul Berg wrote that prestigious NIH should not be degraded to act as a cover for quackery, calling the OAM “an embarrassment to serious scientists.”[124]:175[191] The president of the American Physical Society wrote complaining that the government was spending money on testing products and practices that “violate basic laws of physics and more clearly resemble witchcraft”.[124]:175[191] In 1998, the President of the North Carolina Medical Association publicly called for shutting down the OAM.[192]

In 1998, NIH director and Nobel laureate Harold Varmus came into conflict with Senator Harkin by pushing to have more NIH control of alternative medicine research.[193] The NIH Director placed the OAM under more strict scientific NIH control.[191][193] Senator Harkin responded by elevating OAM into an independent NIH “center”, just short of being its own “institute”, and renamed to be the National Center for Complementary and Alternative Medicine (NCCAM). NCCAM had a mandate to promote a more rigorous and scientific approach to the study of alternative medicine, research training and career development, outreach, and “integration”. In 1999, the NCCAM budget was increased from $20 million to $50 million.[192][193] The United States Congress approved the appropriations without dissent. In 2000, the budget was increased to about $68 million, in 2001 to $90 million, in 2002 to $104 million, and in 2003, to $113 million.[192]

In 2009, after a history of 17 years of government testing and spending of nearly $2.5 billion on research had produced almost no clearly proven efficacy of alternative therapies, Senator Harkin complained, “One of the purposes of this center was to investigate and validate alternative approaches. Quite frankly, I must say publicly that it has fallen short. It think quite frankly that in this center and in the office previously before it, most of its focus has been on disproving things rather than seeking out and approving.”[193][194][195] Members of the scientific community criticized this comment as showing Senator Harkin did not understand the basics of scientific inquiry, which tests hypotheses, but never intentionally attempts to “validate approaches”.[193] Members of the scientific and biomedical communities complained that after a history of 17 years of being tested, at a cost of over $2.5 Billion on testing scientifically and biologically implausible practices, almost no alternative therapy showed clear efficacy.[137] In 2009, the NCCAM’s budget was increased to about $122 million.[193] Overall NIH funding for CAM research increased to $300 Million by 2009.[193] By 2009, Americans were spending $34 Billion annually on CAM.[196]

In 2012, the Journal of the American Medical Association (JAMA) published a criticism that study after study had been funded by NCCAM, but “failed to prove that complementary or alternative therapies are anything more than placebos”.[197] The JAMA criticism pointed to large wasting of research money on testing scientifically implausible treatments, citing “NCCAM officials spending $374,000 to find that inhaling lemon and lavender scents does not promote wound healing; $750,000 to find that prayer does not cure AIDS or hasten recovery from breast-reconstruction surgery; $390,000 to find that ancient Indian remedies do not control type 2 diabetes; $700,000 to find that magnets do not treat arthritis, carpal tunnel syndrome, or migraine headaches; and $406,000 to find that coffee enemas do not cure pancreatic cancer.”[197] It was pointed out that negative results from testing were generally ignored by the public, that people continue to “believe what they want to believe, arguing that it does not matter what the data show: They know what works for them”.[197] Continued increasing use of CAM products was also blamed on the lack of FDA ability to regulate alternative products, where negative studies do not result in FDA warnings or FDA-mandated changes on labeling, whereby few consumers are aware that many claims of many supplements were found not to have not to be supported.[197]

In 2014 the NCCAM was renamed to the National Center for Complementary and Integrative Health (NCCIH) with a new charter requiring that 12 of the 18 council members shall be selected with a preference to selecting leading representatives of complementary and alternative medicine, 9 of the members must be licensed practitioners of alternative medicine, 6 members must be general public leaders in the fields of public policy, law, health policy, economics, and management, and 3 members must represent the interests of individual consumers of complementary and alternative medicine.[198]

There is a general scientific consensus that Alternative Therapies lack the requisite scientific validation, and their effectiveness is either unproved or disproved.[12][15][199][200] Many of the claims regarding the efficacy of alternative medicines are controversial, since research on them is frequently of low quality and methodologically flawed.Selective publication bias , marked differences in product quality and standardisation, and some companies making unsubstantiated claims, call into question the claims of efficacy of isolated examples where there is evidence for alternative therapies.[202]

The Scientific Review of Alternative Medicine points to confusions in the general population – a person may attribute symptomatic relief to an otherwise-ineffective therapy just because they are taking something (the placebo effect); the natural recovery from or the cyclical nature of an illness (the regression fallacy) gets misattributed to an alternative medicine being taken; a person not diagnosed with science-based medicine may never originally have had a true illness diagnosed as an alternative disease category.[203]

Edzard Ernst characterized the evidence for many alternative techniques as weak, nonexistent, or negative[204] and in 2011 published his estimate that about 7.4% were based on “sound evidence”, although he believes that may be an overestimate.[205] Ernst has concluded that 95% of the alternative treatments he and his team studied, including acupuncture, herbal medicine, homeopathy, and reflexology, are “statistically indistinguishable from placebo treatments”, but he also believes there is something that conventional doctors can usefully learn from the chiropractors and homeopath: this is the therapeutic value of the placebo effect, one of the strangest phenomena in medicine.[206][207]

In 2003, a project funded by the CDC identified 208 condition-treatment pairs, of which 58% had been studied by at least one randomized controlled trial (RCT), and 23% had been assessed with a meta-analysis.[208] According to a 2005 book by a US Institute of Medicine panel, the number of RCTs focused on CAM has risen dramatically.

As of 2005[update], the Cochrane Library had 145 CAM-related Cochrane systematic reviews and 340 non-Cochrane systematic reviews. An analysis of the conclusions of only the 145 Cochrane reviews was done by two readers. In 83% of the cases, the readers agreed. In the 17% in which they disagreed, a third reader agreed with one of the initial readers to set a rating. These studies found that, for CAM, 38.4% concluded positive effect or possibly positive (12.4%), 4.8% concluded no effect, 0.69% concluded harmful effect, and 56.6% concluded insufficient evidence. An assessment of conventional treatments found that 41.3% concluded positive or possibly positive effect, 20% concluded no effect, 8.1% concluded net harmful effects, and 21.3% concluded insufficient evidence. However, the CAM review used the more developed 2004 Cochrane database, while the conventional review used the initial 1998 Cochrane database.

In the same way as for conventional therapies, drugs, and interventions, it can be difficult to test the efficacy of alternative medicine in clinical trials. In instances where an established, effective, treatment for a condition is already available, the Helsinki Declaration states that withholding such treatment is unethical in most circumstances. Use of standard-of-care treatment in addition to an alternative technique being tested may produce confounded or difficult-to-interpret results.[210]

Cancer researcher Andrew J. Vickers has stated:

“CAM”, meaning “complementary and alternative medicine”, is not as well researched as conventional medicine, which undergoes intense research before release to the public.[212] Funding for research is also sparse making it difficult to do further research for effectiveness of CAM.[213] Most funding for CAM is funded by government agencies.[212] Proposed research for CAM are rejected by most private funding agencies because the results of research are not reliable.[212] The research for CAM has to meet certain standards from research ethics committees, which most CAM researchers find almost impossible to meet.[212] Even with the little research done on it, CAM has not been proven to be effective.[214]

Steven Novella, a neurologist at Yale School of Medicine, wrote that government funded studies of integrating alternative medicine techniques into the mainstream are “used to lend an appearance of legitimacy to treatments that are not legitimate.”[215] Marcia Angell considered that critics felt that healthcare practices should be classified based solely on scientific evidence, and if a treatment had been rigorously tested and found safe and effective, science-based medicine will adopt it regardless of whether it was considered “alternative” to begin with.[14] It is possible for a method to change categories (proven vs. unproven), based on increased knowledge of its effectiveness or lack thereof. A prominent supporter of this position is George D. Lundberg, former editor of the Journal of the American Medical Association (JAMA).[55]

Writing in 1999 in CA: A Cancer Journal for Clinicians Barrie R. Cassileth mentioned a 1997 letter to the US Senate Subcommittee on Public Health and Safety, which had deplored the lack of critical thinking and scientific rigor in OAM-supported research, had been signed by four Nobel Laureates and other prominent scientists. (This was supported by the National Institutes of Health (NIH).)[216]

In March 2009 a staff writer for the Washington Post reported that the impending national discussion about broadening access to health care, improving medical practice and saving money was giving a group of scientists an opening to propose shutting down the National Center for Complementary and Alternative Medicine. They quoted one of these scientists, Steven Salzberg, a genome researcher and computational biologist at the University of Maryland, as saying “One of our concerns is that NIH is funding pseudoscience.” They noted that the vast majority of studies were based on fundamental misunderstandings of physiology and disease, and had shown little or no effect.[215]

Writers such as Carl Sagan (1934-1996), a noted astrophysicist, advocate of scientific skepticism and the author of The demonhaunted world: science as a candle in the dark (1996), have lambasted the lack of empirical evidence to support the existence of the putative energy fields on which these therapies are predicated.

Sampson has also pointed out that CAM tolerated contradiction without thorough reason and experiment.[217] Barrett has pointed out that there is a policy at the NIH of never saying something doesn’t work only that a different version or dose might give different results.[137] Barrett also expressed concern that, just because some “alternatives” have merit, there is the impression that the rest deserve equal consideration and respect even though most are worthless, since they are all classified under the one heading of alternative medicine.[218]

Some critics of alternative medicine are focused upon health fraud, misinformation, and quackery as public health problems, notably Wallace Sampson and Paul Kurtz founders of Scientific Review of Alternative Medicine and Stephen Barrett, co-founder of The National Council Against Health Fraud and webmaster of Quackwatch.[219] Grounds for opposing alternative medicine include that:

Many alternative medical treatments are not patentable,[citation needed], which may lead to less research funding from the private sector. In addition, in most countries, alternative treatments (in contrast to pharmaceuticals) can be marketed without any proof of efficacyalso a disincentive for manufacturers to fund scientific research.[226]

English evolutionary biologist Richard Dawkins, in his 2003 book A Devil’s Chaplain , defined alternative medicine as a “set of practices that cannot be tested, refuse to be tested, or consistently fail tests.”[227] Dawkins argued that if a technique is demonstrated effective in properly performed trials then it ceases to be alternative and simply becomes medicine.[228]

CAM is also often less regulated than conventional medicine.[212] There are ethical concerns about whether people who perform CAM have the proper knowledge to treat patients.[212] CAM is often done by non-physicians who do not operate with the same medical licensing laws which govern conventional medicine,[212] and it is often described as an issue of non-maleficence.[229]

According to two writers, Wallace Sampson and K. Butler, marketing is part of the training required in alternative medicine, and propaganda methods in alternative medicine have been traced back to those used by Hitler and Goebels in their promotion of pseudoscience in medicine.[15][230]

In November 2011 Edzard Ernst stated that the “level of misinformation about alternative medicine has now reached the point where it has become dangerous and unethical. So far, alternative medicine has remained an ethics-free zone. It is time to change this.”[231]

Original post:

Alternative medicine – Wikipedia

Posted in Alternative Medicine | Comments Off on Alternative medicine – Wikipedia

How Psychedelics Saved My Life – Reset.me

Posted: November 27, 2016 at 9:49 am

by Amber Lyon

on May 28, 2014

Amber Lyon is an Emmy Award-winning former CNN investigative news correspondent.

I invite you to take a step back and clear your mind of decades of falsepropaganda. Governments worldwide lied to us about the medicinal benefits of marijuana. The public has also been misled about psychedelics.

These non-addictive substances- MDMA, ayahuasca, ibogaine, psilocybin mushrooms, peyote, and many more- are proven to rapidly and effectively help people heal from trauma, PTSD, anxiety, addiction and depression.

Psychedelicssaved my life.

I was drawn to journalism at a young age by the desire to provide a voice for the little guy. For nearly a decade working as a CNN investigative correspondent and independent journalist, I became a mouthpiece for the oppressed, victimized and marginalized. My path of submersion journalism brought me closest to the plight of my sources, by living the story to get a true understanding of what was happening.

Speaking ata press conference in Lebanon onthehuman rights abuses Iwitnessed while reporting in Bahrain.

After several years of reporting, I realized an unfortunate consequence of my style- I had immersed myself too deeply in the trauma and suffering of the people Id interviewed. I began to have trouble sleeping as their faces appeared in my darkest dreams. I spent too long absorbed in a world of despair and my inability to deflect it allowed the trauma of others to settle inside my mind and being. Combine that with several violent experienceswhile working in the field and I was at my worst. A life reporting on the edge had led me to the brinkof my own sanity.

Because I could not find a way to process my anguish, it grew into a monster, manifesting itself into a constant state of anxiety, short-term memory loss, sleeplessness, and hyper arousal. The heart palpitations made me feel like I was knocking on deaths door.

While at CNN, Iinvestigated human rights and environmental issues.

Prescription medications and antidepressants serve a purpose, butI knew they were not on mypath tohealing after my investigations exposed their sinister side effectsincluding infants being born dependent on the medicinesafter their mothers couldnt kick their addictions. Masking the symptoms of a deeper condition with a pill felt like putting a Band-Aid on bullet wound.

I was made aware of the potential healing powers of psychedelics as a guest on the Joe Rogan Experience podcast in October 2012. Joe told me psychedelicmushrooms transformed his life and had the potential to changethe course of humanity for the better. My initial reaction was one of amusement and somewhat disbelief, but the seed was planted.

Psychedelics were an odd choice for someone like me. I grew up in the Midwest and was fed 30 years of propaganda explaining how horrible these substances were for my health. You can imagine my jaw-dropping surprise when, after the Rogan podcast, I found articles on the prodigious effects of these substances that behave more like medicines than drugs. Articles like this one, this, this , this, and this. And studies such as this, this, this,this, this and this all gut-wrenching examples of how weve been misled by authorities who classify psychedelics as schedule 1 narcoticsthat have no medicinal value despite dozens of scientific studies proving otherwise.

Having only ever smoked the odd marijuana joint in college, in March 2013 I found myself boarding a plane to Iquitos, Peru to try one of the most powerful psychedelics on earth. I ditched my car at the airport, hastily packed my belongings in a backpack and headed down to the Amazon jungle placing my blind faith in a substance that a week ago I could hardly pronounce: ayahuasca.

Theayahuasca brew is prepared by combining chacruna leaves, that contain the powerful psychedelic DMT, with the ayahuasca vine.

Ayahuasca is a medicinal tea that contains the psychedeliccompound dimethyltryptamine, or DMT. The brewis rapidly spreading around the world after numerous anecdotes have shownthe brew has the power to cureanxiety, PTSD, depression, unexplained pain, and numerous physical and mental health ailments. Studies of long-term ayahuasca drinkersshow they are less likely to face addictions and have elevated levels of serotonin, the neurotransmitterresponsible for happiness.

If I had any reservations, doubts, or disbeliefs, they were quickly expelled shortly after my first ayahuasca experience. The foul-tasting tea vibrated throughmy veins and into my brainas the medicine scanned my body. My field of vision becameengulfed with fiercecolors and geometric patterns. Almost instantly, I saw a vision of a brick wall. The word anxiety was spray painted in large letters on the wall. You must heal your anxiety, the medicine whispered. I entereda dream-like state where traumatic memories were finally dislodged from my subconscious.

It was as if I was viewing a film ofmy entire life, not as the emotional me, but as an objective observer. The vividlyintrospective movie played in my mind asI relived my most painful scenes- my parents divorce when I was just 4 years-old, past relationships, being shot at by policewhile photographing a protest in Anaheim and crushed underneath a crowd while photographing a protest in Chicago. The ayahuasca enabled me to reprocess these events, detaching the fear and emotion from the memories. Theexperience was akin to ten years of therapy in one eight-hour ayahuasca session.

But theexperience, and many psychedelic experiences for that matter, was terrifying at times. Ayahuasca is not for everyone- you have to be willing to revisit some very dark places and surrender to the uncontrollable, fierceflow of the medicine. Ayahuascaalso causesviolent vomiting and diarrhea, which shamans call getting well because youare purging trauma from your body.

After seven ayahuasca sessions in the jungles of Peru, the fog that engulfed my mind lifted. I was able to sleep again and noticedimprovements in my memory and less anxiety. I yearned to absorb as much knowledge as possible about these medicines and spent the next year travelling the world in search of more healers, teachers and experiences through submersion journalism.

I was drawn totry psilocybin mushrooms after reading how they reduced anxiety in terminal cancer patients. The ayahuasca showed me my main ailmentwas anxiety, and I knew I still had work to do to fix it. Psilocybinmushroomsare not neurotoxic, nonaddictive, and studies show they reduce anxiety, depression, and even lead to neurogenesis, or the regrowth of brain cells. Why would governments worldwide keep such a profound fungiout of the reach of their people?

The curandera blesses me as Iconsume a leaf full of psilocybin mushrooms for the healing ceremony.

After Peru, I visited curanderas, or healers, in Oaxaca, Mexico. The Mazatecs have used psilocybinmushrooms as a sacrament and medicinally for hundreds of years. Curandera Dona Augustine served me a leaf full of mushrooms during a beautiful ceremony before a Catholic alter. As she sang thousand year-old songs, I watched the sunset over the mountainous landscape in Oaxaca and a deep sense of connectivity washed over my whole being. The innate beauty had me at a loss for words; a sudden outpouring of emotion had me in tears. I cried through the night and with each tear a small part of my trauma trickled down my cheek and dissolved onto the forest floor, freeing me from its toxic energy.

Psilocybin mushrooms are not neurotoxic, non-addictive, and a study from University of Southern Florida shows they can repair brain damage from trauma.

Perhaps most astounding, the mushrooms silenced the self-critical part of my mind long enough for me to reprocess memories without fear or emotion. The mushrooms enabled me to remember one of the most terrifying moments of my career: when I wasdetained at gunpoint in Bahrain while filming a documentary for CNN. I had lost any detailedrecollection of that daywhen masked men pointed guns at our heads andforced my crew and I onto the ground. Fora good half an hour, I did not know whether we were going to survive.

I spent many sleepless nights desperately searching for memories of that day, but they were locked inmy subconscious. Iknew the memoriesstill haunted me becauseanytime I would see PTSD triggers, such as loud noises, helicopters, soldiers, or guns, a rush of anxiety and panic would flood my body.

The psilocybin was the key to unlock the trauma, enabling me to relive the detainmentmoment to moment, from outside of my body, as an emotionless, objective observer. I peered into the CNNvan and saw my former selfsitting in the backseat, loud helicopters overhead. My producer Taryn was sitting to theright of me frantically trying to close the van door as we tried to make an escape. I heardTaryn screamguns! as armedmasked men jumpedout of the security vehicles surroundingthe van. I watched as Ifrantically dug through a backpack on the floor, grabbing my CNN ID card and jumpingout of thevan. I saw myself land on the groundin childs pose, dust covering mybody and face. Iwatched as I threw myhand with the CNN badge in the air above myhead yelling CNN, CNN, dont shoot!!

I saw the pain in my face as the security forces threw human rights activist and dear friend Nabeel Rajab against a security car and began to harass him. I saw the terror in my faceas I glanced down at my shirt, arms in the air, prayingthe video cardsconcealed on my body wouldnt fall onto the ground.

During the ceremony the psilocybin unlocks traumatic memories stored deep in my subconscious so I can process them and heal. The experience is intensely introspective.

As I relived each moment of the detainment, I reprocessed each memory moving it from the fear folder to its new permanent home in the safe folder in my brains hard drive.

Five ceremonies with psilocybin mushrooms cured my anxiety and PTSD symptoms. The butterflies that had a constant home in my stomach have flown away.

Psychedelics are not the be-all and end-all. For me, theywere the key that openedthe door to healing. I still have to work to maintain the healing with the use of floatationtanks, meditation, and yoga. For psychedelics to be effective, its essential they are taken with the right mindset in a quiet, relaxed setting conducive to healing, and that all potential prescription drug interactions are carefully researched. Itcan be fatalif Ayahuasca is mixed with prescription antidepressants.

I was blessed with an inquisitive nature and a stubbornness to always question authority. Had I opted for a doctors script and resigned myself in the hope that things would just get better, I never would have discovered the outer reaches of my mind and heart. Had I drunk the Kool-Aid and believed that all drugs are evil and have no healing value, I may still be in the midst of a battle with PTSD.

This very world that glamorizes war, violence, commercialism, environmental destruction, and suffering has outlawed some of the most profound keys to inner peace. The War on Drugs is not based on science. If it was, two of the most deadly drugs on earth-alcohol and tobacco- would be illegal. Those suffering from trauma have become victims of this failed war and have lost one of the most effective ways to heal.

Humanity has gone mad as a result.

Lyon and a scientist cut open a fish stomach to inspect for plastic litter while filming a documentary on excessive ocean plastic pollution.

I spent ten years witnessing the collective insanity as a journalist on the frontlines- wars, bloodshed, environmental destruction, sex slavery, lies, addiction, anger, fear.

But I had it all wrong journalistically. I had beenfocusing on the symptoms of an ill society, rather than attacking the root cause: unprocessed trauma.

We all have trauma. Trauma rests in the violent criminal, the cheating spouse, the corrupt politician, those suffering from mental illness, addictions, inside those too fearful to take risks and reach their full potential.

If its not adequately processed and purged, trauma becomes cemented onto the hard drive of the mind, growing into a dark parasite that rears its ugly head throughout a persons entire life. The wounds keep us locked in a grid of fear, trapped behind a personality not true to the soul, working a mundane job rather than following a passion, repeating a cycle of abuse, destroying the environment, harming one another. The most common and severe suffering is inflicted during childhood and hijacks the drivers seat into adulthood, steering an individual down a road deprived ofhappiness. Renowned addiction expertGabor Mate says, The major cause of severe substance addiction is always childhood trauma.

We live in a world full of wounds and when left untreated, theyre unceremoniously handed from one generation to the next, so the cycle of trauma continues in all its destructive brutality.

But theres hope. We can transform the course of humanity by collectively purging our grief and healing at the individual level, with the help of psychedelic medicines. Once we collectively heal atthe individual level, we will see dramatic positive transformation in society as a whole.

I founded the websitereset.me, to produce and aggregate journalism on consciousness, natural medicines, and therapies. Psychedelic explorer Terrence McKenna compared taking psychedelics to hitting the reset button on your internal hard drive, clearing out the junk, and starting over. I created reset.me to help connect those who need to hit the reset button in life with journalism covering thetools that enableus to heal.

Its a human rights crisis psychedelics are not accessible to the general population. Its insane that governments worldwide have outlawedthe very medicines that can emancipate our souls from suffering.

Its time westop the madness.

Follow this link:

How Psychedelics Saved My Life – Reset.me

Posted in Psychedelics | Comments Off on How Psychedelics Saved My Life – Reset.me

Government news, articles and information:

Posted: November 23, 2016 at 10:05 pm

Why governments aren’t all that different from street gangs 3/12/2016 – At some point, you may have heard someone call the government a “gang of thieves writ large,” which is a generalization of a quote attributed to libertarian thinker Murray Rothbard. However, if you’re not familiar with the philosophy behind that quote, you might mistakenly believe that it is nothing… Have you ever felt like the government doesn’t really care what you think? 3/2/2016 – Professors Martin Gilens (Princeton University) and Benjamin I. Page (Northwestern University) looked at more than 20 years worth of data to answer a simple question: Does the government represent the people? (Article republished from Represent.Us.) Their study took data from nearly 2000 public opinion… A message to Libertarians about the FDA 2/6/2016 – “When I ran for a seat in the US Congress in 1994, I was very aggressive in demanding that we go after the FDA as a rogue criminal agency. Others, at the time, who were in favor of Health Freedom, said I should dial back my rhetoric; all we needed was a good law that would protect our right to take… The emergence of Orwellian newspeak and the death of free speech 1/23/2016 – “If you don’t want a man unhappy politically, don’t give him two sides to a question to worry him; give him one. Better yet, give him none. Let him forget there is such a thing as war. If the government is inefficient, top-heavy, and tax-mad, better it be all those than that people worry over it……. UK government caught running ISIS Twitter accounts 1/7/2016 – Americans are rightfully concerned that jihadis from the Islamic State of Iraq and Syria (ISIS) are already on U.S. soil, but apparently we’re not the only Western nation with an ISIS problem. Britain, it seems, has one as well. As reported by the UK’s Mirror, hackers have made the claim that several… DHS gives TSA authority to forcibly irradiate Americans against their will 1/3/2016 – Americans who understand the health risks of full-body TSA X-ray scanners will choose to opt out of the invasive scan. The TSA requires those who opt out of the full-body scan to undergo a physically invasive full-body pat down. Now, a new rule created by the Department of Homeland Security will… Propaganda at your expense: U.S. govt. is second largest P.R. firm in the world 12/23/2015 – It’s no secret that many people feel that the U.S. Government is synonymous with all things shady, filled with half-truths, loopholes and lingo that sounds fancy, but is really a self-serving set of words designed to offer minimal benefits to the rest of society. Supporting these opinions is a finding… The dire state of our nation (what you won’t hear from the politicians) 12/10/2015 – “As nightfall does not come at once, neither does oppression. In both instances, there is a twilight when everything remains seemingly unchanged. And it is in such twilight that we all must be most aware of change in the air — however slight — lest we become unwitting victims of the darkness.” –… Vaccine vs. Virus: Which is the bigger threat? 12/3/2015 – Mainstream media clamor for mandatory vaccines, ignoring official statistics that show the drug is more dangerous than the disease. Should government force parents to vaccinate their children? The deaths of more than 100 children have been officially linked to receiving a measles vaccine during the… Evidence of vaccine injuries memory-holed from U.S. government website 11/9/2015 – The federal government, perhaps at the behest of the Obama administration, has been quietly removing vaccine injury court data from a publicly reported chart that at one time was updated monthly, investigative journalist Sharyl Attkisson reported recently on her web site. “In March, the federal government… U.S. government STEALS American family’s land near Area 51 Air Force base 10/31/2015 – For decades, the U.S. government has maintained that “there’s nothing to see” at its secretive Air Force base designated as “Area 51.” Certainly not Martians or other creatures from outer space, as many have theorized. And yet, for some reason, Uncle Sam seems to have something to hide out there… DARPA creates search engine to expose the dark web to government surveillance 10/21/2015 – The Defense Department’s most secretive research division has created a new computer program giving America’s spies a powerful tool to search the so-called “dark web,” where some of the most sophisticated terrorist organizations operate. DARPA – the Defense Advanced Research Projects Agency – recently… The Gestapo is alive and well in Obama’s America 10/18/2015 – Hi. I’m Wayne Allyn Root for Personal Liberty. Barack Obama is going rogue. By every metric,[1] the Obama economy is melting down. We are seeing the beginning stages of another recession, at best, or a total economic meltdown, at worst. (Story by Wayne Allyn Root, republished from PersonalLiberty.com) At… Russian government to outlaw all GMO food products to protect citizens’ health 10/3/2015 – As the American people are being force-fed GMOs and petitioning their government for honest food labels, other countries around the world are already removing the transgenic ingredients from their food supply. As Americans beg to know what kind of agro-chemicals and GMOs are in their food, the Russian… UK government to require registration of all religious leaders 9/16/2015 10:29:24 AM – In September 1620, pilgrims from England set sail for the “new world,” hoping to find new opportunities and escape religious persecution. Today, hundreds of years later, its possible British subjects might once again be forced to flee religious oppression. Canada’s National Post reports that religious… Government water police state almost here 7/30/2015 – Anyone who says that liberty, freedom and individualism has thrived under the Obama administration has either been living in a cave or is far too partisan to acknowledge what’s really been going on. The Obamaites have long used the power of the federal bureaucracy that the president controls to limit,… New Zealand government takes further steps to ease raw milk prohibition 7/17/2015 – It’s not exactly a complete scrapping of the country’s antiquated prohibition laws governing the production and sale of raw milk, but the government of New Zealand has responded to consumer demand and made it at least somewhat easier for individuals and families to access this highly sought-after food… Supreme Court rules against federal seizure of farmer’s crop production 7/15/2015 – The U.S. Supreme Court has either been a bane on the Constitution or a champion of civil rights with rulings handed down in recent days, but one issue in particular that appears to win approval of a large majority of Americans garnered far fewer headlines and attention. On June 22, in one effort,… See all 2206 government feature articles. Robots: Japan: Robot: WHO: Future: World: Sales: Canada: Pharmaceutical industry: The FDA: Drug company profits: Drugs from Canada: Drug monopoly: FDA: SAMe: Consumers: Today’s Top Stories on NaturalNews

Today | Week | Month | Year

See All Top Headlines…

CounterThink Cartoons are free to view and download. They cover topics like health, environment and freedom.

The Consumer Wellness Center is a non-profit organization offering nutrition education grants to programs that help children and expectant mothers around the world.

Food Investigations is a series of mini-documentaries exposing the truth about dangerous ingredients in the food supply.

Webseed.com offers alternative health programs, documentaries and more.

The Honest Food Guide is a free, downloadable public health and nutrition chart that dares to tell the truth about what foods we should really be eating.

HealingFoodReference.com offers a free online reference database of healing foods, phytonutrients and plant-based medicines that prevent or treat diseases and health conditions.

HerbReference.com is a free, online reference library that lists medicinal herbs and their health benefits.

NutrientReference.com is a free online reference database of phytonutrients (natural medicines found in foods) and their health benefits. Lists diseases, foods, herbs and more.

Read the original here:

Government news, articles and information:

Posted in Government Oppression | Comments Off on Government news, articles and information:

Artificial Intelligence in Medicine: An Introduction

Posted: at 10:00 pm

Acknowledgement The material on this page is taken from Chapter 19 of Guide to Medical Informatics, the Internet and Telemedicine (First Edition) by Enrico Coiera (reproduced here with the permission of the author). Introduction

From the very earliest moments in the modern history of the computer, scientists have dreamed of creating an ‘electronic brain’. Of all the modern technological quests, this search to create artificially intelligent (AI) computer systems has been one of the most ambitious and, not surprisingly, controversial.

It also seems that very early on, scientists and doctors alike were captivated by the potential such a technology might have in medicine (e.g. Ledley and Lusted, 1959). With intelligent computers able to store and process vast stores of knowledge, the hope was that they would become perfect ‘doctors in a box’, assisting or surpassing clinicians with tasks like diagnosis.

With such motivations, a small but talented community of computer scientists and healthcare professionals set about shaping a research program for a new discipline called Artificial Intelligence in Medicine (AIM). These researchers had a bold vision of the way AIM would revolutionise medicine, and push forward the frontiers of technology.

AI in medicine at that time was a largely US-based research community. Work originated out of a number of campuses, including MIT-Tufts, Pittsburgh, Stanford and Rutgers (e.g. Szolovits, 1982; Clancey and Shortliffe, 1984; Miller, 1988). The field attracted many of the best computer scientists and, by any measure, their output in the first decade of the field remains a remarkable achievement.

In reviewing this new field in 1984, Clancey and Shortliffe provided the following definition:

Much has changed since then, and today this definition would be considered narrow in scope and vision. Today, the importance of diagnosis as a task requiring computer support in routine clinical situations receives much less emphasis (J. Durinck, E. Coiera, R. Baud, et al., “The Role of Knowledge Based Systems in Clinical Practice,” in: eds Barahona and Christenen, Knowledge and Decisions in Health Telematics – The Next Decade, IOS Press, Amsterdam, pp. 199- 203, 1994), So, despite the focus of much early research on understanding and supporting the clinical encounter, expert systems today are more likely to be found used in clinical laboratories and educational settings, for clinical surveillance, or in data-rich areas like the intensive care setting. For its day, however, the vision captured in this definition of AIM was revolutionary.

After the first euphoria surrounding the promise of artificially intelligent diagnostic programmes, the last decade has seen increasing disillusion amongst many with the potential for such systems. Yet, while there certainly have been ongoing challenges in developing such systems, they actually have proven their reliability and accuracy on repeated occasions (Shortliffe, 1987).

Much of the difficulty has been the poor way in which they have fitted into clinical practice, either solving problems that were not perceived to be an issue, or imposing changes in the way clinicians worked. What is now being realised is that when they fill an appropriately role, intelligent programmes do indeed offer significant benefits. One of the most important tasks now facing developers of AI-based systems is to characterise accurately those aspects of medical practice that are best suited to the introduction of artificial intelligence systems.

In the remainder of this chapter, the initial focus will thus remain on the different roles AIM systems can play in clinical practice, looking particularly to see where clear successes can be identified, as well as looking to the future. The next chapter will take a more technological focus, and look at the way AIM systems are built. A variety of technologies including expert systems and neural networks will be discussed. The final chapter in this section on intelligent decision support will look at the way AIM can support the interpretation of patient signals that come off clinical monitoring devices.

In his opinion, there were no ultimately useful measures of intelligence. It was sufficient that an objective observer could not tell the difference in conversation between a human and a computer for us to conclude that the computer was intelligent. To cancel out any potential observer biases, Turing’s test put the observer in a room, equipped with a computer keyboard and screen, and made the observer talk to the test subjects only using these. The observer would engage in a discussion with the test subjects using the printed word, much as one would today by exchanging e-mail with a remote colleague. If a set of observers could not distinguish the computer from another human in over 50% of cases, then Turing felt that one had to accept that the computer was intelligent.

Another consequence of the Turing test is that it says nothing about how one builds an intelligent artefact, thus neatly avoiding discussions about whether the artefact needed to in anyway mimic the structure of the human brain or our cognitive processes. It really didn’t matter how the system was built in Turing’s mind. Its intelligence should only to be assessed based upon its overt behaviour.

There have been attempts to build systems that can pass Turing’s test in recent years. Some have managed to convince at least some humans in a panel of judges that they too are human, but none have yet passed the mark set by Turing.

An alternative approach to strong AI is to look at human cognition and decide how it can be supported in complex or difficult situations. For example, a fighter pilot may need the help of intelligent systems to assist in flying an aircraft that is too complex for a human to operate on their own. These ‘weak’ AI systems are not intended to have an independent existence, but are a form of ‘cognitive prosthesis’ that supports a human in a variety of tasks.

AIM systems are by and large intended to support healthcare workers in the normal course of their duties, assisting with tasks that rely on the manipulation of data and knowledge. An AI system could be running within an electronic medical record system, for example, and alert a clinician when it detects a contraindication to a planned treatment. It could also alert the clinician when it detected patterns in clinical data that suggested significant changes in a patient’s condition.

Along with tasks that require reasoning with medical knowledge, AI systems also have a very different role to play in the process of scientific research. In particular, AI systems have the capacity to learn, leading to the discovery of new phenomena and the creation of medical knowledge. For example, a computer system can be used to analyse large amounts of data, looking for complex patterns within it that suggest previously unexpected associations. Equally, with enough of a model of existing medical knowledge, an AI system can be used to show how a new set of experimental observations conflict with the existing theories. We shall now examine such capabilities in more detail.

Expert or knowledge-based systems are the commonest type of AIM system in routine clinical use. They contain medical knowledge, usually about a very specifically defined task, and are able to reason with data from individual patients to come up with reasoned conclusions. Although there are many variations, the knowledge within an expert system is typically represented in the form of a set of rules.

There are many different types of clinical task to which expert systems can be applied.

Generating alerts and reminders. In so-called real-time situations, an expert system attached to a monitor can warn of changes in a patient’s condition. In less acute circumstances, it might scan laboratory test results or drug orders and send reminders or warnings through an e-mail system.

Diagnostic assistance. When a patient’s case is complex, rare or the person making the diagnosis is simply inexperienced, an expert system can help come up with likely diagnoses based on patient data.

Therapy critiquing and planning. Systems can either look for inconsistencies, errors and omissions in an existing treatment plan, or can be used to formulate a treatment based upon a patient’s specific condition and accepted treatment guidelines.

Agents for information retrieval. Software ‘agents’ can be sent to search for and retrieve information, for example on the Internet, that is considered relevant to a particular problem. The agent contains knowledge about its user’s preferences and needs, and may also need to have medical knowledge to be able to assess the importance and utility of what it finds.

Image recognition and interpretation. Many medical images can now be automatically interpreted, from plane X-rays through to more complex images like angiograms, CT and MRI scans. This is of value in mass-screenings, for example, when the system can flag potentially abnormal images for detailed human attention.

There are numerous reasons why more expert systems are not in routine use (Coiera, 1994). Some require the existence of an electronic medical record system to supply their data, and most institutions and practices do not yet have all their working data available electronically. Others suffer from poor human interface design and so do not get used even if they are of benefit.

Much of the reluctance to use systems simply arose because expert systems did not fit naturally into the process of care, and as a result using them required additional effort from already busy individuals. It is also true, but perhaps dangerous, to ascribe some of the reluctance to use early systems upon the technophobia or computer illiteracy of healthcare workers. If a system is perceived by those using it to be beneficial, then it will be used. If not, independent of its true value, it will probably be rejected.

Happily, there are today very many systems that have made it into clinical use. Many of these are small, but nevertheless make positive contributions to care. In the next two sections, we will examine some of the more successful examples of knowledge-based clinical systems, in an effort to understand the reasons behind their success, and the role they can play.

In the first decade of AIM, most research systems were developed to assist clinicians in the process of diagnosis, typically with the intention that it would be used during a clinical encounter with a patient. Most of these early systems did not develop further than the research laboratory, partly because they did not gain sufficient support from clinicians to permit their routine introduction.

It is clear that some of the psychological basis for developing this type of support is now considered less compelling, given that situation assessment seems to be a bigger issue than diagnostic formulation. Some of these systems have continued to develop, however, and have transformed in part into educational systems.

DXplain is an example of one of these clinical decision support systems, developed at the Massachusetts General Hospital (Barnett et al., 1987). It is used to assist in the process of diagnosis, taking a set of clinical findings including signs, symptoms, laboratory data and then produces a ranked list of diagnoses. It provides justification for each of differential diagnosis, and suggests further investigations. The system contains a data base of crude probabilities for over 4,500 clinical manifestations that are associated with over 2,000 different diseases.

DXplain is in routine use at a number of hospitals and medical schools, mostly for clinical education purposes, but is also available for clinical consultation. It also has a role as an electronic medical textbook. It is able to provide a description of over 2,000 different diseases, emphasising the signs and symptoms that occur in each disease and provides recent references appropriate for each specific disease.

Decision support systems need not be ‘stand alone’ but can be deeply integrated into an electronic medical record system. Indeed, such integration reduces the barriers to using such a system, by crafting them more closely into clinical working processes, rather than expecting workers to create new processes to use them.

The HELP system is an example of this type of knowledge-based hospital information system, which began operation in 1980 (Kuperman et al., 1990; Kuperman et al., 1991). It not only supports the routine applications of a hospital information system (HIS) including management of admissions and discharges and order entry, but also provides a decision support function. The decision support system has been actively incorporated into the functions of the routine HIS applications. Decision support provide clinicians with alerts and reminders, data interpretation and patient diagnosis facilities, patient management suggestions and clinical protocols. Activation of the decision support is provided within the applications but can also be triggered automatically as clinical data is entered into the patient’s computerised medical record.

One of the most successful areas in which expert systems are applied is in the clinical laboratory. Practitioners may be unaware that while the printed report they receive from a laboratory was checked by a pathologist, the whole report may now have been generated by a computer system that has automatically interpreted the test results. Examples of such systems include the following.

Laboratory expert systems usually do not intrude into clinical practice. Rather, they are embedded within the process of care, and with the exception of laboratory staff, clinicians working with patients do not need to interact with them. For the ordering clinician, the system prints a report with a diagnostic hypothesis for consideration, but does not remove responsibility for information gathering, examination, assessment and treatment. For the pathologist, the system cuts down the workload of generating reports, without removing the need to check and correct reports.

All scientists are familiar with the statistical approach to data analysis. Given a particular hypothesis, statistical tests are applied to data to see if any relationships can be found between different parameters. Machine learning systems can go much further. They look at raw data and then attempt to hypothesise relationships within the data, and newer learning systems are able to produce quite complex characterisations of those relationships. In other words they attempt to discover humanly understandable concepts.

Learning techniques include neural networks, but encompass a large variety of other methods as well, each with their own particular characteristic benefits and difficulties. For example, some systems are able to learn decision trees from examples taken from data (Quinlan, 1986). These trees look much like the classification hierarchies discussed in Chapter 10, and can be used to help in diagnosis.

Medicine has formed a rich test-bed for machine learning experiments in the past, allowing scientists to develop complex and powerful learning systems. While there has been much practical use of expert systems in routine clinical settings, at present machine learning systems still seem to be used in a more experimental way. There are, however, many situations in which they can make a significant contribution.

Shortliffe EH. The adolescence of AI in medicine: will the field come of age in the ’90s? Artif Intell Med. 1993 Apr;5(2):93-106. Review.

Read more here:

Artificial Intelligence in Medicine: An Introduction

Posted in Artificial Intelligence | Comments Off on Artificial Intelligence in Medicine: An Introduction

Free genetic engineering Essays and Papers – 123helpme

Posted: November 21, 2016 at 11:00 am

Title Length Color Rating The Effects of Genetic Engineering on Agriculture – Genetic engineering is a way in which specific genes for an animal or plant can be extracted, and reproduced to form a new animal or plant. These new organisms will express the required trait for that gene. This practice is a very controversial topic within the scientific world. It is being implemented in various areas such as agriculture even though there are many alternatives that can be found for genetic engineered crops, such as organic materials and reducing leeching of the soil. The controversy regarding this practice occurs as it is believed to contribute both negative and positive implications and dangers, not only to oneself but the environment as a whole…. [tags: Genetic Engineering ] :: 5 Works Cited 1303 words (3.7 pages) Strong Essays [preview] Pros and Cons of Genetic Engineering – Genetic Engineering is highly controversial since some people believe that genetic engineering is playing God. As this fact there is opposition to the progression of the field by people who do not see the value in genetic engineering, or they fear what genetic engineering may lead to for us as people. There is a history of discover that belongs to genetic engineering, which has led to numerous products that have emerged which have brought numerous applications to the society of the world. Though there are benefits to genetic engineering, there are also drawbacks to genetic engineering including ethical and legal issues that are dealt with in todays society in order to try and regulate the… [tags: Genetic Engineering] :: 8 Works Cited 2049 words (5.9 pages) Term Papers [preview] The Benefits of Genetic Engineering – Almost three decades ago, on July 25, 1978, Louise Brown, the first test tube baby was born (Baird 1). With this birth another controversy broke out, do humans have the right to make life. Most of the concern comes from the fear of control over the production and development of human beings. But, those who are against cloning would most likely look the other way if they needed gene therapy after receiving a grim diagnosis. There are many aspects of genetic engineering and to thoroughly understand it looking into each is absolutely necessary…. [tags: Genetic Engineering ] :: 6 Works Cited 1443 words (4.1 pages) Powerful Essays [preview] The Ethics of Genetic Engineering – The Problem Genetic engineering has been around since the 1960s although major experiments have not been really noticed until the 1990s. The science comes in different forms the two major being cloning and genetic reconstruction. Cloning is the duplicating of one organism and making an exact copy. For example in 1996 the creation of the clone sheep named Dolly the first mammal to be cloned which was a great achievement. The other form, genetic reconstruction, is used to replace genes within humans to help or enhance the life of an unborn child for a medical reason or just for the preference of a parent…. [tags: Genetic Engineering ] :: 5 Works Cited 1437 words (4.1 pages) Powerful Essays [preview] Apocalyptic Visions of Genetic Engineering – Global warming, nuclear winter, microscopic black holessociety views all these as apocalyptic phenomena resulting from the accelerating rate of discovery in the fields of science and technology. Opinions on fields like climate change and atomic weaponry certainly have a basis in scientific evidence, but many other apocalyptic reactions derive from hypothetical situations and thought experiments. To further examine public opinions on scientific fields, we can examine genetic engineering (GE). The possibilities of GE have prompted many ethicists to provide commentary on the topic, opening a dialogue between policy and experimentation in order to address topics such as genetically modified cro… [tags: Genetic Engineering] :: 7 Works Cited 2203 words (6.3 pages) Term Papers [preview] The Genetic Engineering Industry – Ever wish chocolate was healthy and could have the same nutrients and vitamins as fruit and vegetables. Food, one of three necessities of life, affects every living organism on Earth. Although some foods are disliked because of taste or health issues, recent discovery will open up new prosperities and growth in agriculture. Genetic engineering has the capability to make foods taste better, increase nutrient value, and even engineer plants to produce aids for deadly health issues. Every day the progress, understanding, and development of genetic engineering is digging deeper and with this knowledge virtually anything is possible…. [tags: Genetic Engineering ] :: 7 Works Cited 1806 words (5.2 pages) Term Papers [preview] Genetic Engineering in Humans – Author Chuck Klosterman said, The simple truth is that were all already cyborgs more or less. Our mouths are filled with silver. Our nearsighted pupils are repaired with surgical lasers. We jam diabetics full of delicious insulin. Almost 40 percent of Americans now have prosthetic limbs. We see to have no qualms about making post-birth improvements to our feeble selves. Why are we so uncomfortable with pre-birth improvement? Despite Klostermans accurate observation, there are reasons people are wearisome toward pre-birth enhancement…. [tags: Genetic Engineering ] 859 words (2.5 pages) Better Essays [preview] Genetic Engineering: The Impact of Human Manipulation – The scenes of a science fiction movie show presumably unrealistic scientific inventions. In today’s world, time travel, cloning, and even light sabers are some of the countless topics that are seemingly unattainable and just ideas of the imagination. Saying that these events are feasible would be completely absurd. However, with recent scientific advancements, science fiction is now becoming more of a reality rather than a fantasy. Nevertheless, only about twenty-five years ago, genetic engineering fell into this same, idealistic category…. [tags: Genetic Engineering ] :: 6 Works Cited 1725 words (4.9 pages) Better Essays [preview] Genetic Engineering: A Major Advancement for Mankind – As the Biochemist Isaac Asimov once said, “The advancement of Genetic Engineering makes it quite conceivable that we will design our own evolutionary progress. Scientists have always thought about new ways to progress through technology in our era, and in 1946, scientists discover that Genetic material from different viruses can be combined to form a new type of virus. This was a major discovery that trickles down to the modern era of Genetics. Current scientists have pioneered new ways to decode human DNA, beating the $3 billion government-run Genome project to its goal…. [tags: Genetic Engineering] :: 10 Works Cited 973 words (2.8 pages) Strong Essays [preview] Genetic Engineering: Is the Human Race Ready? – It is incredible to see how far genetic engineering has come. Humans, plants, and any living organism can now be manipulated. Scientists have found ways to change humans before they are even born. They can remove, add, or alter genes in the human genome. Making things possible that humans (even thirty years ago) would have never imagined. Richard Hayes claims in SuperSize Your Child. that genetic engineering needs to have limitations. That genetic engineering should be used for medical purposes, but not for genetic modification that could open the door to high-tech eugenic engineering (188)…. [tags: Genetic Engineering] 1455 words (4.2 pages) Powerful Essays [preview] The Dark Side of Genetic Engineering – I never knew what genetic engineering was until I watched a special on the Discovery channel. The special showed scientists forming the first perfect embryo. What was very shocking was that the scientists kept asking each other what traits this embryo should compose of. To me that was disturbing and unethical to make a living human being based on what traits the parents would want them to have. This process goes against nature just as Francis Bacon said if we would control nature, we must first obey her (Fox 193)…. [tags: Genetic Engineering Essays] 1104 words (3.2 pages) Strong Essays [preview] Historical Background Of Genetic Engineering – DNA is the material that gives us our personality, our looks, and our thought processes, good or bad, DNA controls all of this. DNA full name is Deoxyribonucleic Acid. It is called that because it is missing one oxygen atom, and it is located in the nucleus. It is also in the form of an acid. DNA is made up of four subunits: Adenine, Thymine, Guanine and Cytosine. During the production of RNA, the messenger of DNA, Uracil is used instead of thymine. A small segment of this DNA is called a gene…. [tags: dna, Genetic Engineering, genes] :: 8 Works Cited 1513 words (4.3 pages) Powerful Essays [preview] Genetic Engineering Is Not Safe – Genetic engineering is the intended modification to an organisms genetic makeup. There have been no continuing studies on this topic or action so there is no telling whether or not it is harmless. Genetic engineering is not safe because scientists have no absolute knowledge about living systems. Given that, they are unable to do DNA surgery without creating mutations. Any interference on an organisms genetic makeup can cause permanent damage, hereditary defects, lack of nutritious food, or a spread of dangerous diseases…. [tags: Genetic Engineering Essays] :: 5 Works Cited 994 words (2.8 pages) Good Essays [preview] Genetic Engineering: A Step Forward – Genetic engineering (GE) refers to the technique of modification or manipulation of genes (the biological material or chemical blue print that determines a living organisms traits) from one organism to another thus giving bacteria, plants, and animals, new features. The technique of selecting the best seed or the best traits of plants has been around for centuries. Humans have learned to graft (fuse) and hybridize (cross breed) plants, creating dwarfs and other useful forms since at least 1000 B.C…. [tags: Genetic Engineering Essays] 498 words (1.4 pages) Strong Essays [preview] Benefits of Genetic Engineering – Genetic Engineering is an idea that we can ponder on quiet days. The creation of altered DNA is an enticing aspect that can greatly influence the average human life. The research of genetic engineering is an ongoing exploration that may never end. I am a supporter of a genetic engineering. There are three basic beneficial basis of genetic engineering. Those are genetically altered crops, the creation of medicines, and the creation of organs so that many lives could be saved. Genetically altered crops are very beneficial to third world countries…. [tags: Genetic Engineering, DNA, ] :: 3 Works Cited 455 words (1.3 pages) Strong Essays [preview] Understanding Genetic Engineering – What if cancer could be cured by eating a pear. Or if a crop of wheat could be developed so that it never rotted. These may sound like science fiction but they’re not as strange as they first seem to be, and may even be reality in the future. Fifteen years ago who would have thought that plants could be created to be immune to pesticides or that it would be possible to create a sheep that is exactly like its parent in every physical way. And yet both of these currently exist due to genetic engineering…. [tags: Genetic Engineering ] :: 13 Works Cited 1820 words (5.2 pages) Term Papers [preview] Genetic Engineering: Annotated Bibliography – Genetic Engineering. The World Book Encyclopedia. 2008 ed. This encyclopedia was extremely helpful. In not knowing all of the exact terms and basic knowledge of genetic engineering, it helped inform any reader of all this and more. The pages that had information on genetics and genetic engineering, had detailed definitions and descriptions for all the terms and ideas. Instead of focusing more towards the future of genetic engineering, it gave numerous facts about the technology and accomplishments of today…. [tags: Annotated Bibliographies, Genetic Engineering] 879 words (2.5 pages) Strong Essays [preview] Is Genetic Engineering Superior or Appalling? – Genetic engineering has changed a lot through the years. It is now possible not to only be able to genetically engineer just plants but also animals and people, plants especially. There are many different kind of plants that have been genetically modified. Genetic engineering is not all good but it is also not all bad. Genetic Engineering will come together the more you read. Plants are not the only thing getting bigger because of genetic engineering modifying the sizes. Animals are starting to become a bigger part of genetic engineering…. [tags: genetic plants,polar tree, genetic engineering] :: 7 Works Cited 1183 words (3.4 pages) Strong Essays [preview] Genetic Engineering: The Negative Impacts of Human Manipulation – The scenes of a science fiction movie show presumably unrealistic scientific inventions. In today’s world, time travel and cloning are only two of the countless topics that are seemingly unattainable ideas of the imagination. Saying that these events are within reach would be completely absurd. However, with recent scientific advancements, science fiction is now becoming more of a reality rather than a fantasy. Nevertheless, only about twenty-five years ago, genetic engineering fell into this same, idealistic category…. [tags: Genetic Engineering ] :: 6 Works Cited 1675 words (4.8 pages) Powerful Essays [preview] Genetic Engineering: Major Advancement or Major Setback? – As the Biochemist Isaac Asimov once said, “The advancement of Genetic Engineering makes it quite conceivable that we will design our own evolutionary progress. Scientists have always thought about new ways to progress through technology in this era, and in 1946, scientists discovered that Genetic material from different viruses can be combined to form a new type of virus. This was a major discovery that trickles down to the modern era of Genetics. Current scientists have pioneered new ways to decode human DNA, beating the $3 billion government-run Genome project to its goal…. [tags: Genetic Engineering ] :: 10 Works Cited 1335 words (3.8 pages) Strong Essays [preview] Human Genetic Engineering in Beneficial to Society – Even after thousands of years of evolution, the human race is not perfect: it is ravaged by disease and limited by nature. Yet, in recent times, researchers have begun to ascertain an advanced understanding of the underlying genetic code of humanity. The Human Genome Project, now complete, has provided a map of the intricacies in human DNA, allowing researchers to begin looking at the purpose of each gene. When combined with selective embryo implantation, which is used occasionally today to avoid hereditary diseases or to choose gender, genetic discoveries can become a sort of artificial evolution…. [tags: Pro Human Genetic Engineering] :: 8 Works Cited 1484 words (4.2 pages) Powerful Essays [preview] Genetic Engineering – Just imagine the scene: and newlywed wife and husband are sitting down with a catalog, browsing joyously, pointing and awing at all the different options, fantasizing about all the possibilities that could become of their future. Is this a catalog for new furniture. No. This catalog for all features, phenotype and genotype, for the child they are planning to have. It is basically a database for parents to pick and choose all aspects of their children, from the sex of the child, to looks, and even to personality traits…. [tags: Genetic Engineering] 1131 words (3.2 pages) Good Essays [preview] Genetic Engineering – Genes are, basically, the blueprints of our body which are passed down from generation to generation. Through the exploration of these inherited materials, scientists have ventured into the recent, and rather controversial, field of genetic engineering. It is described as the “artificial modification of the genetic code of a living organism”, and involves the “manipulation and alteration of inborn characteristics” by humans (Lanza). Like many other issues, genetic engineering has sparked a heated debate…. [tags: Genetic Engineering ] :: 7 Works Cited 1882 words (5.4 pages) Term Papers [preview] Genetic Engineering: The End of Life as We Know It – Prior to 1982, genetic engineering was a relatively new branch of science. Today, scientists have a firm understanding of genetics and its importance to the living world. Genetic engineering allows us to influence the laws of nature in ways favorable to ourselves. Although promising in its achievements, it also has the potential for abuse. If engineering of this caliber were to be used for anything other than the advancement of the human race, the effects could be devastating. If precautions are not implemented on this science, parents might use it solely for eugenic purposes…. [tags: Genetic Engineering Essays] 773 words (2.2 pages) Better Essays [preview] Genetic Engineering: The Next Technological Leap or a Disruption to the Natural Order of Our Planet? – While walking down the produce aisle at your local grocery store, have you ever questioned where the assortment of goods came from. When asked, perhaps your first thought would likely be from a local farm or orchard. But what if I were to tell you that those very goods could in fact be from a far less obvious third choice. What if someone told you that those pretty peaches on display were meticulously grown in a laboratory to bring forth predetermined traits. As futuristic as it may sound, this type of technology is no longer science fiction but has become a new reality…. [tags: Genetic Engineering ] :: 3 Works Cited 936 words (2.7 pages) Better Essays [preview] The Need for Policy Makers to Regulate Human Genetic Engineering – Human genetic engineering (HGE), a prevalent topic for scientists in research, is the process of manipulating genes in the human genome. Potentially, scientists can use the process of HGE to alter many biological and psychological human traits by gene modification. Currently, however, there is a large deficiency in information regarding HGE and its effects to the human body; creating a need for scientists to conduct more research and tests. Because of the many unknowns involving HGE it is necessary for policy makers to regulate HGE for the use by scientists…. [tags: Human Genetic Engineering] :: 2 Works Cited 1249 words (3.6 pages) Strong Essays [preview] The Pros and Cons of Genetic Engineering – Genetic engineering is a process in which scientists transfer genes from one species to another totally unrelated species. Usually this is done in order to get one organism to produce proteins, which it would not naturally produce. The genes taken from one species, which code for a particular protein, are put into cells of another species, using a vector. This can result in the cells producing the desired protein. It is used for producing proteins which can be used by humans, such as insulin for diabetics and is also used to make organisms better at surviving, for example genetically modifying a plant so that it can survive in acidic soil…. [tags: Genetic Engineering Essays] 1054 words (3 pages) Better Essays [preview] Genetic Engineering: The Controversy of Genetic Screening – The Controversy of Genetic Screening Craig Ventor of Celera Genomics, Rockville, MD, and Francis Collins of the National Institutes of Health and Wellcome Trust, London, England, simultaneously presented the sequence of human DNA in June of 2000, accomplishing the first major endeavor of the Human Genome Project (HGP) (Ridley 2). As scientists link human characteristics to genes-segments of DNA found on one or more of the 23 human chromosomes-prospects for genetic engineering will increase dramatically…. [tags: Genetic Engineering Essays] :: 4 Works Cited 1609 words (4.6 pages) Powerful Essays [preview] An Enhanced Genotype: Ethical Issues Involved with Genetic Engineering and their Impact as Revealed by Brave New World – An Enhanced Genotype: Ethical Issues Involved with Genetic Engineering and their Impact as Revealed by Brave New World Human society always attempts to better itself through the use of technology. Thus far, as a species, we have already achieved much: mastery of electronics, flight, and space travel. However, the field in which the most progress is currently being made is Biology, specifically Genetic Engineering. In Aldous Huxleys Brave New World, humanity has taken control of reproduction and biology in the same way that we have mastered chemistry and physics…. [tags: Genetic Engineering ] :: 6 Works Cited 2288 words (6.5 pages) Term Papers [preview] The Benefits of Genetic Engineering – Outline I. Thesis statement: The benefits of genetic engineering far outweigh its potential for misuse. II. Genetic Engineering A. Definition of Genetic Engineering. (#6) B. Who invented Genetic Engineering Gregor Mendel (Christopher Lampton #7) Thomas Hunt Morgan (Christopher Lampton #7) III. Benefits of Genetic Engineering A. Genetic Screening (Laurence E. Karp #4) B. Gene Therapy (Renato Dulbecco #6) C. Cloning D. Genetic Surgery (Christopher Lampton #7) E. Benefits in Agriculture (David Pimentel and Maurizio G…. [tags: Genetic Engineering Research Papers] :: 15 Works Cited 2500 words (7.1 pages) Strong Essays [preview] The Benefits of Genetic Engineering – The selective Engineering of Genetics is invaluable to the health and happiness of humans. The importance of this issue has played second fiddle to the arguments, for and against genetic engineering. This essay will discuss the impact of genetic engineering on everyday life, for example genetic disorders, disease and how its impact on life in the world today. Although the opinions differ greatly, the benefits are substantial. Firstly, an increasing importance is being placed on the role of genetic engineering in the use of riding the incidence of genetic disorders…. [tags: Genetic Engineering Essays] :: 8 Works Cited 1176 words (3.4 pages) Strong Essays [preview] The Benefits of Genetic Engineering – What exactly is genetic engineering. A simple definition of genetic engineering is the ability to isolate DNA pieces that contain selected genes of other species(Muench 238). Genetic engineering has been the upcoming field of biology since the early nineteen seventies. The prosperous field has benefits for both the medical and also the agricultural field. The diminishing of diseases, especially congenital disorders, reduction of pollution, eradication of world hunger, and increased longevity are just some of the possibilities which scientists foresee…. [tags: Genetic Engineering Essays] 1146 words (3.3 pages) Strong Essays [preview] Genetic Engineering Is Not Ethical – For many years, genetic engineering has been a topic in heated debates. Scientists propose that genetic engineering far outweighs its risks in benefits and should be further studied. Politicians argue that genetic engineering is largely unethical, harmful, and needs to have strong limitations. Although genetic engineering may reap benefits to modern civilization, it raises questions of human ethics, morality, and the limitations we need to set to protect humanity. Though there is harsh criticism from politicians, scientists continue to press forward saying that genetic engineering is of utmost importance to help and improve society…. [tags: Genetic Engineering is Immoral ] :: 5 Works Cited 1490 words (4.3 pages) Strong Essays [preview] Is Genetic Engineering Ethically Correct? – Over the past few years, genetic engineering has come a long way from its roots. What spawned as just a project for understanding has now become quite powerful. An article written by Michael Riess aided me in gaining some knowledge of the ethical dilemmas faced in the field of genetic engineering. Suppose you and your partner both discover that you are carriers of a genetic defect known as cystic fibrosis, and the two of you are expecting a baby. Genetic screening gives you the opportunity to use antenatal diagnosis to see if the baby will have cystic fibrosis or not (Reiss)…. [tags: Genetic Engineering Essays] :: 2 Works Cited 715 words (2 pages) Strong Essays [preview] The Benefits of Genetic Engineering – The engineering of deoxyribonucleic acid (DNA) is entirely new, yet genetics, as a field of science, has fascinated mankind for over 2,000 years. Man has always tried to bend nature around his will through selective breeding and other forms of practical genetics. Today, scientists have a greater understanding of genetics and its role in living organisms. Unfortunately, some people are trying to stop further studies in genetics, but the research being conducted today will serve to better mankind tomorrow…. [tags: Genetic Engineering Essays] 1109 words (3.2 pages) Strong Essays [preview] The Benefits of Genetic Engineering – Many people are envied or deprecated because of certain traits they are born with. Those that are envied are a select few, which in turn is why they are envied. When one child in a nursery has a toy, he is coveted by all the other children in the nursery. He will be idolized, and nearly every child will want to be his friend. However, there will also those that want the toy for themselves. The children that are jealous will do whatever they can to get the toy. The jealous children often resort to violence, and this is true in all aspects of life…. [tags: Genetic Engineering Essays] 975 words (2.8 pages) Strong Essays [preview] Genetic Engineering and the Media – Genetic engineering and its related fields have stimulated an extremely controversial scientific debate about cloning for the last decade. With such a wide range of public opinions, it is hard to find any middle ground. Some feel that improving the genes of future children will help mankind make a major evolutionary step forward. Others agree that there could be dangerous unforeseen consequences in our genetic futures if we proceed with such endeavors. A third group warns that the expense of genetic enhancement will further separate the wealthy from the poor and create a super race. Popular magazines and the Internet are two of the major arenas in which this debate has been hotly cont… [tags: Genetic Engineering Essays] :: 21 Works Cited 1731 words (4.9 pages) Powerful Essays [preview] The FDA Should Prohibit Genetic Engineering – Abstract: Recent developments in genomic research have enabled humans to manipulate the genes of living organisms with genetic engineering. Scientists have used this momentous technology in environmental and most recently, agricultural spheres. However, the United States Food and Drug Administration (FDA) does not require that genetically altered foods be labeled as such. As a result, there is no protection against humans’ ability to construct organisms that nature never intended to exist and to threaten nature’s carefully balanced environment. Is it ethically responsible for the government to allow scientists to continue with these advances if they do not understand their consequences…. [tags: Genetic Engineering, Genetic Ethics] :: 10 Works Cited 2439 words (7 pages) Powerful Essays [preview] Genetic Engineering is Immoral – Genetic engineering gives the power to change many aspects of nature and could result in a lot of life-saving and preventative treatments. Today, scientists have a greater understanding of genetics and its role in living organisms. However, if this power is misused, the damage could be very great. Therefore, although genetic engineering is a field that should be explored, it needs to be strictly regulated and tested before being put into widespread use. Genetic engineering has also, opened the door way to biological solutions for world problems, as well as aid for body malfunctions…. [tags: Genetic Engineering Essays] 423 words (1.2 pages) Strong Essays [preview] Genetic Engineering is Unethical – Just as the success of a corporate body in making money need not set the human condition ahead, neither does every scientific advance automatically make our lives more meaningful’; (Wald 45). These words were spoken by a Nobel Prize winning biologist and Harvard professor, George Wald, in a lecture given in 1976 on the Dangers of Genetic Engineering. This quotation states that incredible inventions, such as genetic engineering, are not always beneficial to society. Genetic engineering is altering the genetic material of cells and/or organisms in order to make them capable of making new substances or performing new functions’; (Wald 45)…. [tags: Genetic Engineering is Immoral] :: 3 Works Cited 1141 words (3.3 pages) Better Essays [preview] Genetic Engineering is Unethical – Genetic engineering is a technology that has been created to alter DNA of different species to try and make them more improved. This essay will discuss the eugenics, the religious point of view about genetic engineering, genetically modified food and the genetic screening of embryos. In this essay it will be said wether genetic engineering is ethical or unethical. During 1924 Hitler said that everyone needs to be blond hair, blue eyes and white. This is known as Eugenics, thanks to a new science known as biotechnology in a few decades…. [tags: Genetic Engineering Essays] 492 words (1.4 pages) Strong Essays [preview] Genetic Engineering: Playing God – Current technology has made what once seemed impossible, mapping the human genome, a reality within the next decade. What began over forty years ago with the discovery of the basic structure of DNA has evolved into the Human Genome Project. This is a fifteen-year, three billion dollar effort to sequence the entire human genetic code. The Project, under the direction of the U.S. National Institute of Health and the department of Energy is ahead of schedule in mapping what makes up an individual’s genetic imprint…. [tags: Genetic Engineering Essays] 634 words (1.8 pages) Strong Essays [preview] Genetic Engineering: Playing God – Regenerating extinct species, engineering babies that are born without vital body organs, this is what the use of genetic engineering brings to the world. In Greek myth, an chimera was a part lion, part goat, part dragon that lived in Lycia; in real life, its an animal customized with genes of different species. In reality, it could be a human-animal mixture that could result in horror for the scientific community. In myth the chimera was taken down by the warrior Bellerophon, the biotech version faces platoons of lawyers, bioethicists, and biologists (Hager)…. [tags: Genetic Engineering Essays] :: 8 Works Cited 1804 words (5.2 pages) Strong Essays [preview] Genetic Engineering Research Paper – I. Introduction In the past three decades, scientists have learned how to mix and match characteristics among unrelated creatures by moving genes from one creature to another. This is called genetic engineering. Genetic Engineering is prematurely applied to food production. There are estimates that food output must increase by 60 percent over the next 25 years to keep up with demand. Thus, the result of scientist genetically altering plants for more consumption. The two most common methods for gene transfer are biological and electromechanical…. [tags: Science Biology Genetic Engineering Essays] :: 3 Works Cited 1347 words (3.8 pages) Strong Essays [preview] Human Genetic Engineering: Unnatural Selection – Introduction Technology has a significant influence across the world, as it has become a fast growing field. Modern biotechnology has been in the major forefront of this influence. From the discovery of DNA to the cloning of various animals, the study of genetic engineering has changed the way society views life. However, does genetic engineering have the capacity to influence the world to its best abilities. Products, which are genetically engineered, may cause severe negative effects on our society…. [tags: Genetic Engineering Essays] :: 3 Works Cited 1509 words (4.3 pages) Strong Essays [preview] Genetic Engineering – At the Roslin Institute in Edinburgh, Scotland, Dr. Keith Campbell, director of embryology at PPL therapeutics in Roslin, and his colleague Dr. Ian Wilmut worked together on a project to clone a sheep, Dolly, from adult cells. On February 22, 1997, they finally succeeded. Dolly was the only lamb born from 277 fusions of oocytes with udder cells. Wilmut says there were so many failures because it is difficult to ensure that the empty oocytes and the donor cell are at the same stage of the cell division cycle.To clone Dolly, basically scientists took an unfertilized egg cell, removed the nucleus, replaced it with cells taken from the organism to be cloned, put it into an empty egg cell which… [tags: Genetic Engineering Essays] 1446 words (4.1 pages) Strong Essays [preview] Genetic Engineering: Our Key to a Better World – What is genetic engineering one might ask and why is there so much moral controversy surrounding the topic. Genetic engineering as defined by Pete Moore, “is the name given to a wide variety of techniques that have one thing in common: they all allow the biologist to take a gene from one cell and insert it into another” (SS1). Such techniques included in genetic engineering (both “good” and “bad”) are, genetic screening both during the fetal stage and later in life, gene therapy, sex selection in fetuses, and cloning…. [tags: Genetic Engineering Essays] :: 3 Works Cited 1117 words (3.2 pages) Better Essays [preview] Genetic Engineering and Cryonic Freezing: A Modern Frankenstein? – Genetic Engineering and Cryonic Freezing: A Modern Frankenstein. In Mary Shelley’s Frankenstein, a new being was artificially created using the parts of others. That topic thus examines the ethics of “playing God” and, though written in 1818, it is still a relevant issue today. Genetic engineering and cryogenic freezing are two current technologies related to the theme in the novel of science transcending the limits of what humans can and should do. Genetic engineering is widely used today…. [tags: Genetic Engineering Essay Examples] :: 5 Works Cited 1507 words (4.3 pages) Powerful Essays [preview] Genetic Engineering: The Tremendous Benefits Outweigh the Risks – Wouldn’t it be great to improve health care, improve agriculture, and improve our quality of life. Genetic engineering is already accomplishing those things, and has the potential to accomplish much more. Genetic engineering, also referred to as biotechnology, is a fairly new science where the genes of an organism are modified to change the features of an organism or group of organisms. Genes are found in the DNA (deoxyribonucleic acid) of an organism, and each gene controls a specific trait of an organism…. [tags: Genetic Engineering Essay Examples] :: 7 Works Cited 2253 words (6.4 pages) Powerful Essays [preview] Genetic Engineering Brings More Harm Than Good – Until the recent demise of the Soviet Union, we lived under the daily threat of nuclear holocaust extinguishing human life and the entire biosphere. Now it looks more likely that total destruction will be averted, and that widespread, but not universally fatal, damage will continue to occur from radiation accidents from power plants, aging nuclear submarines, and perhaps the limited use of tactical nuclear weapons by governments or terrorists. What has gone largely unnoticed is the unprecedented lethal threat of genetic engineering to life on the planet…. [tags: Genetic Engineering Essays] 1953 words (5.6 pages) Strong Essays [preview] Genetic Engineering New Teeth – The article I read was about some scientists that were able to grow teeth inside rats bodies. This project was led by Pamela C. Yelick, a scientist for Forsyth Institute, and the project was conducted in Massachusetts. Joseph P. Vacanti, a tissue engineer at Massachusetts General Hospital, and Yelick had the idea for the experiment. Vacanti had previously worked with rats and he found that cells will naturally organize themselves into tissues and other complex structures if they are placed in the right environment…. [tags: Genetic Engineering Essays] 736 words (2.1 pages) Strong Essays [preview] Ethics of Human Cloning and Genetic Engineering – INTRODUCTION When the Roslin Institute’s first sheep cloning work was announced in March 1996 the papers were full of speculation about its long-term implications. Because of this discovery, the medias attention has focused mainly on discussion of the possibility, of cloning humans. In doing so, it has missed the much more immediate impact of this work on how we use animals. It’s not certain this would really lead to flocks of cloned lambs in the fields of rural America, or clinically reproducible cuts of meat on the supermarket shelves…. [tags: Genetic Engineering Essays] :: 9 Works Cited 1845 words (5.3 pages) Strong Essays [preview] We Must Educate Ourselves Before Passing Laws Restricting Cloning and Genetic Engineering – Biotechnology and genetic engineering involve the cloning of animal cells and organisms, but they also involve the alteration of an organism in an effort to make it more perfect, whether it is a crop, an animal, or even a human being. Obviously the cloning of humans or the cloning of human cells is much different than the cloning of genetically superior livestock or a better quality, higher yielding food crop, and people throughout the world realize this. The cloning of human beings has become one of the worst fears in our society today and for that reason many laws have been passed throughout European countries and North America in an effort to ban human cloning…. [tags: Genetic Engineering Essays] :: 4 Works Cited 1937 words (5.5 pages) Powerful Essays [preview] The Benefits of Human Genetic Engineering – Pre-implantation genetic diagnosis is a revolutionary procedure that utilizes in vitro fertilization to implant a healthy egg cell into the mothers uterus after it is screened for mutations or other abnormalities. That way, only healthy eggs can develop to term and become beautiful, bouncing boys or girls. Designer babies have a bright future in the face of science because they are genetically engineered to be: disease free; viable donors for a sibling or parent; and with optional elimination of any severe cosmetic disorders that might develop,without risk to human diversity in the future…. [tags: Pre-implantation genetic diagnosis, PGD] :: 6 Works Cited 1650 words (4.7 pages) Powerful Essays [preview] Genetic Engineering The Perfect Child – Modern society has an unquestionable preoccupation with perfection. Indulging in our vanities with things such as plastic surgery, veneers, botox, collagen, hair dye, and so on, have become a part of the socially acceptable norm. People do these things, and more, in an attempt to become their ideal selves. However, many are taking these practices to a completely new extreme, and are not stopping at just altering their own physical characteristics. With recent advances in medical science and technology, couples are now able to genetically modify embryos to create their ideal children…. [tags: Pre-Implantation Genetic Diagnosis] :: 2 Works Cited 1022 words (2.9 pages) Strong Essays [preview] The Morals and Ethics of Genetic Engineering – Introduction Widely considered a revolutionary scientific breakthrough, genetic engineering has been on a path toward changing the world since its introduction in 1973 by Stanley Cohen and Herbert Boyer (What). However, as genetic engineering slowly permeates the lives of humanity, the morals and ethics behind what are now common practices are entering public attention, and as a culture we are left to question whether the change brought on by such a discovery bring benefits and positive change, or damage and destruction…. [tags: genetics, theology, bioethics, DNA, GMOs] :: 13 Works Cited 3322 words (9.5 pages) Research Papers [preview] The Human Genetic Engineering Debate – Science is moving forward at an increasing rate every day. Just in the past decade, there have been numerous new discoveries in astronomy, chemistry, geology, paleontology, and many more scientific fields. However, some of the fastest growing subjects are in the field of biological sciences, more specifically genetics. Over the past twenty years a new genetic science known as genetic engineering has come to prominence. Genetic engineering is the direct manipulation of an organisms genome using biotechnology, including a humans genome…. [tags: Genetics, Science Ethics] :: 9 Works Cited 1838 words (5.3 pages) Better Essays [preview] Genetic Engineering in the Modern World – Advances in biotechnology can be looked at two ways; both, positive and negative. People can also differ in what would qualify as a positive and negative way. Some may think that tinkering with Deoxyribonucleic acid also know as DNA, should not be allowed at all for any reason. Others may believe that manipulating human DNA can have many different beneficial outcomes. Biotechnology and genetic engineering can be looked at in two very different ways; can either be misused or unethical or it can be beneficial, ethical, and used for the better kind…. [tags: biotechnology, DNA, abortion] :: 1 Works Cited 966 words (2.8 pages) Better Essays [preview] Genetic Engineering and the Pursuit of Perfection – Research Paper Rough Draft In the year 2050, a young boy nervously rehearses what hes going to say as he approaches the cheerleader hes been too nervous to approach for the past month. But as he draws near, a jock pushes his books out of his hands. Hes teased, being the school wimp. They call him names like undesirable, god-child, and in-valid. Of course nobody cares for a less-than-perfect child whose genetic makeup was left to fate. With the introduction of genetic engineering into society, people like this young boy simply have no hope for competing against the likes of the genetically reimagined, perfect jock, people engineered to be unflawed…. [tags: Perfection, Body Image, Technology] :: 10 Works Cited 1898 words (5.4 pages) Powerful Essays [preview] Genetic Engineering: Pros and Cons – Our world has finally begun its long-predicted descent into the depths of chaos. We may not yet realize it, but more and more problems plague the very state of our humanity with each passing day, such as cancer, famine, genetic disorders, and social elitism. It seems as though there is little hope, although a new solution has finally emerged, in the form of genetic engineering. It is apparent, however, that currently we cannot proceed, because while there are an abundant amount of advantages to genetic engineering, it is not a utopian process; criticism includes its practicality, theological implications, and changes in modern social structure…. [tags: Eugenics, Ethics] :: 5 Works Cited 1212 words (3.5 pages) Strong Essays [preview] Is Genetic Engineering Ethically Right? – Described at its most simple, ethics can be described as a socially constructed set of behaviours and beliefs deemed either acceptable or unacceptable by the vast majority of people. Ethical beliefs can vary somewhat from person to person and are ever changing and malleable (www.ncbi.nlm.gov/pubmed/15289521). There are three main ethical theories used by present day philosophers; these are Meta-ethics, Normative ethics and Applied ethics. Meta-ethics focuses on the nature of moral judgement and the foundation of ethical principles…. [tags: DNA, gene, diabetis] :: 10 Works Cited 1191 words (3.4 pages) Strong Essays [preview] Genetic Engineering and the Public – Genetic Engineering and the Publics Uses of Genetic Engineering Opinions about genetic engineering range from disgust to awe. These opinions may also depend on what type of animal is being genetically manipulated, how such manipulation is being done, and for what reasons. In California, pet fish that have been genetically altered to fluoresce (glofish) have been restricted for sale.[1] Yet, for the rest of the United States these fish are found in several species, varieties and morphs. In California, Commissioner of Californias Fish and Game, Sam Schuchat, felt that there was a difference in genetic modification depending on the use of the product made.[2] The use of genetic engineering f… [tags: Stake Holders, Science, Dialogue] :: 6 Works Cited 877 words (2.5 pages) Better Essays [preview] Genetic Engineering: A Good Thing? – Today there are many definitions of Genetic Engineering, such as Genetic Engineering is a laboratory technique used by scientists to change the DNA of living organisms (Kowalski) and Genetic Engineering refers to the modification or manipulation of a living organisms genes (Genetic). No matter the wording all definitions of genetic engineering refers to somehow changing an organisms genetic identity. Many people today support genetic engineering because it has many potential benefits for today’s society; however, it also has many potential threats associated with it…. [tags: argumentative, persuasive, informative] :: 19 Works Cited 1928 words (5.5 pages) Powerful Essays [preview] Genetic Engineering and its Drawbacks – In the past few years, there have been numerous technological advances, one of them being genetic engineering. Scientists are experimenting with genes and animals to create everything from a Day-Glo pet fish to a pig whose liver could be used in a liver transplant for humans. Scientists argue that genetic engineering can be used to test medicinal products without putting humans at risk, to battle diseases and to make a body with a stronger immune system, amongst many other reasons, which they claim are to improve the outcome of the human race…. [tags: gene, transplant, animal testing] :: 9 Works Cited 911 words (2.6 pages) Better Essays [preview] The Perfect Child: Genetic Engineering – Have you ever wondered what it would be like if you could produce the perfect child. You picked their eye color, hair color, body type, even intelligence level. Instead of waiting nine months to see what your child looks like; you will already know because you chose their outer appearance. Improvements in science, has given way to the idea of allowing people to choose their offsprings physical attributes. This new concept is known as designer babies. A designer baby according to the oxford dictionary is a baby whose genetic makeup has been artificially selected by genetic engineering, combined with in vitro fertilization to ensure the presence or absence of particular genes or characteris… [tags: Designer Babies, Stem Cells] :: 5 Works Cited 899 words (2.6 pages) Better Essays [preview] Cons of Genetic Modification of Plants – In our everyday lives we have a substantial need for food. Everyone on planet earth needs food to survive from day to day, so engineers have begun mutating plants and crops to create a better source of nutrition to the population. Scientists are pushing the boundaries in order to create the most bountiful crops and, in turn, healthier people. Imagine what could happen if there were larger harvests, more succulent fruits and nutritious vegetables. Our imagination can run wild with the endless possibilities of genetic alteration of food…. [tags: Genetic Engineering ] :: 5 Works Cited 1011 words (2.9 pages) Strong Essays [preview] Germline Engineering and Reprogenetic Technologies – Modern technologies are constantly advancing in a multitude of ways to the degree that scientists have gained enough knowledgeable about the human genome to be able to find specific genes during the embryonic stage of reproduction. Scientists have already begun to use this knowledge to allow parents the ability to select the sex of their child and screen for genetic diseases via preimplantation genetic diagnosis (PGD) with in vitro fertilization (IVF). Sex-selection has already created world-wide discussion regarding the ethics of such a situation…. [tags: Genetic Engineering ] :: 4 Works Cited 2055 words (5.9 pages) Term Papers [preview] Genetic Engineering and Experimentation – … However, Ill be using it in the context that it is the experimentation of genetic engineering to see if its safe for the public. While you might think genetic engineering/experimentation is all fun and games while youre having your genes modified to make you smarter, or prettier, or something like that, there are consequences and dangers that can come with that modification. Then again, once perfected, genetic engineering could do a lot of good for humanity and society in general. Eliminate diseases, fix mental and psychological disabilities, maybe even (and semi-hopefully) keep people from being outright stupid…. [tags: Science, Controversy] :: 4 Works Cited 880 words (2.5 pages) Better Essays [preview] The Genetic Engineering Debate – In recent discussions of genetic engineering, a controversial issue has been whether genetic engineering is ethical or not. In The Person, the Soul, and Genetic Engineering, JC Polkinghorne discusses about the moral status of the very early embryo and therapeutic cloning. J. H. Brookes article Commentary on: The Person, the Soul, and Genetic Engineering comments and state opinions that counter Polkinghornes article. On the other hand John Harriss Goodbye Dolly? The Ethics of Human Cloning examines the possible uses and abuses of human cloning and draw out the principal ethical dimensions, both of what might be done and its meaning, and of public and official response (353)…. [tags: Ethical Dilemma, Embryos With Dignity] :: 4 Works Cited 1403 words (4 pages) Powerful Essays [preview] Ethics of Genetic Modification Technology – Modern society is on the verge of a biotechnological revolution: the foods we eat no longer serve simply to feed us, but to feed entire nations, to withstand natural disasters, and to deliver preventative vaccination. Much of this technology exists due to the rapid development of genetic modification, and todays genetically modified crops are only the tip of the proverbial iceberg. Says Robert T. Fraley, chief technology officer for biotech giant Monsanto, Its like computers in the 1960s. We are just at the beginning of the explosion of technology we are going to see.” Biotechnologys discontents are numerous and furious, declaring the efforts of corporations of Monsanto to be dangerous… [tags: Genetic Engineering] 776 words (2.2 pages) Better Essays [preview] Xerosotmia and genetic engineering – All around the globe, predominantly in the United States and in Europe, there are technological advances in science that affects the way people live. In recent years, genetically modified organisms (GMOs) have replaced peoples diet with genetically altered foods, which has affected human health. In a broad view, GMOs are created by splicing genes of different species that are combined through genetic engineering, consequently improving the resulting organism. Large corporations who choose to use Xerosotmia i i make larger profits with less time and effort involved (ABNE)…. [tags: biology, genetically modified organisms] :: 4 Works Cited 1309 words (3.7 pages) Powerful Essays [preview] The Dangers of Genetic Engineering – Genetically manipulating genes to create certain traits in a human embryo is impossible at this point. Perhaps it will never happen. It is not inevitable in the long run, as some scientists pragmatically point out. (Embgen). It is, however, something that dominates modern day discussion concerning genetics and therefore must be addressed with care and consideration. There are many ways that gene manipulation could come about. Advances in spermatogenesis as well as the field of assisted reproductive technology, as seen in In Vitro Fertilization clinics, point toward methods that could house the systematic alteration of genetic information in reproductive cells. Transpl… [tags: Genetic Manipulation Essays] :: 5 Works Cited 1033 words (3 pages) Strong Essays [preview] Engineering the Perfect Human – For centuries, mankind has been fascinated by the idea of perfection. In recent decades, the issue has been raised regarding the perfect human and whether scientists are able to engineer and create this. Attempts have been made in the past to engineer this said perfect human, through eugenics and scientific racism, but until now, these attempts have been ineffective. Only now, with modern technology, are scientists able to make more significant progress in altering the human genome to the produce desired characteristics of perfection…. [tags: Genetic Engineering ] :: 21 Works Cited 1831 words (5.2 pages) Term Papers [preview] Can Genetic Modification Benefit Humanity? – Throughout the course of human history, new technological advancements have always created opposing views, and conflict between the different groups that hold them. Today, one of the greatest technological controversies is over the morals and practicality of genetically modifying crops and animals. Reasons for doing so vary from making them more nutritious to making plants more bountiful to allowing organisms to benefit humans in ways never before possible. Genetic engineering is a process in which genes within the DNA of one organism are removed and placed into the DNA of another, a reshuffling of genesfrom one species to another (Steinbrecher qtd…. [tags: Genetic Engineering] 1676 words (4.8 pages) Powerful Essays [preview] Genetic Engineering – In the field of animal and human genetic engineering there is much more speculation, than fact, because very little has actually been tested in the real world. Firstly, theres a big question mark over safety of genetic engineering. In addition, genetic engineering can cause greater problems than that what we have today. Moreover, we can create a injustice world between Designer vs Non-designer children. Furthermore, genetic engineering is a type of murder because of the process of genetically modifying a baby…. [tags: designer babies, perfect baby] :: 5 Works Cited 911 words (2.6 pages) Better Essays [preview] Genetic Engineering – Imagine a world where diseases can be found and prevented before they happen. This would be a future possibility if genetic engineering became more advanced. Genetic engineering is when parts of DNA are spliced into another piece of DNA which give new traits to the organism containing the DNA. Through continued research in the field of genetics, techniques such as mapping genomes and splicing DNA can be used beneficially to improve on existing organisms and their traits. To help understand genetic engineering, it is important to understand its history…. [tags: Cloning] :: 4 Works Cited 894 words (2.6 pages) Better Essays [preview] Genetic Engineering – In the 21st century, times are changing. Everyday objects are becoming perfect with alterations to their system. These alterations are not only occurring on man-made objects, but also on natural organisms, such as newborn babies. Science has come a long way to being able to have the capability to alter pre-born babies to a parents desire. There are four arguments that can be considered when discussing this topic, including nature and three others. While many scientific minds are all for creating perfection in a child, many different groups of minds are arguing this act against nature should be abolished from scientists minds…. [tags: Ethics] 888 words (2.5 pages) Better Essays [preview] Genetic Engineering – I, as a Christian, believe that the traits of a child are a blessing to a parent in one-way or another. Although I hold this true, I actually wouldnt mind being able to design my own baby. I mean, I could root out all of the bad traits, and add the ones I want. I would make my child a girl with olive skin, brown hair, bright green eyes, and to have the dancing feet of Fosse, the facial expressions of Liz Taylor, and the vocal chords of Lea Michelle. I want her to be a star of the screen or stage…. [tags: controversy, genes, physical traits, flaws] :: 3 Works Cited 890 words (2.5 pages) Better Essays [preview] Genetic Engineering – Moore’s law, the statement that technologies will double every two years is a very thought-provoking inception for technologist and scientist (Moore’s Law par.1). Numerous people are thrilled about this commandment while others are petrified. Why an individual might be troubled by technology one might inquire. Well there are many arguments that claim that technology is contrary to itself, nature, and humans. The unpretentious fact is technology is cohesive within the humanoid existence and will linger as time travels on…. [tags: genetically modified foods] :: 13 Works Cited 1461 words (4.2 pages) Powerful Essays [preview] Human Genetic Engineering: Dreams and Nightmares – Technological breakthroughs and advancements have occurred so rapidly since the dawn of the information age, that one often overlooks the great power humanity holds over the building blocks of life itself. While our understanding and mapping of Deoxyribonucleic acid (DNA) sequences has been slow coming since Friedrich Mieschers isolation of the double-helix shaped molecule, efforts in recent decades to map the human genome have opened many doors to the potential manipulation of lifes basic elements…. [tags: human genome, human genetics, cloning] :: 7 Works Cited 1162 words (3.3 pages) Strong Essays [preview]

Read more:
Free genetic engineering Essays and Papers – 123helpme

Posted in Genetic Engineering | Comments Off on Free genetic engineering Essays and Papers – 123helpme

Space colonization – Wikipedia

Posted: November 14, 2016 at 11:33 am

Space colonization (also called space settlement, or extraterrestrial colonization) is permanent human habitation off the planet Earth.

Many arguments have been made for and against space colonization.[1] The two most common in favor of colonization are survival of human civilization and the biosphere in case of a planetary-scale disaster (natural or man-made), and the vast resources in space for expansion of human society. The most common objections to colonization include concerns that the commodification of the cosmos may be likely to enhance the interests of the already powerful, including major economic and military institutions, and to exacerbate pre-existing detrimental processes such as wars, economic inequality, and environmental degradation.[2][3]

No space colonies have been built so far. Currently, the building of a space colony would present a set of huge technological and economic challenges. Space settlements would have to provide for nearly all (or all) the material needs of hundreds or thousands of humans, in an environment out in space that is very hostile to human life. They would involve technologies, such as controlled ecological life support systems, that have yet to be developed in any meaningful way. They would also have to deal with the as yet unknown issue of how humans would behave and thrive in such places long-term. Because of the present cost of sending anything from the surface of the Earth into orbit (around $2,500 per-pound to orbit, expected to further decrease)[4] a space colony would currently be a massively expensive project.

There are yet no plans for building space colonies by any large-scale organization, either government or private. However, many proposals, speculations, and designs for space settlements have been made through the years, and a considerable number of space colonization advocates and groups are active. Several famous scientists, such as Freeman Dyson, have come out in favor of space settlement.[5]

On the technological front, there is ongoing progress in making access to space cheaper (reusable launch systems could reach $10 per-pound to orbit)[6] and in creating automated manufacturing and construction techniques.[7]

The primary argument calling for space colonization is the long-term survival of human civilization. By developing alternative locations off Earth, the planet’s species, including humans, could live on in the event of natural or man-made disasters on our own planet.

On two occasions, theoretical physicist and cosmologist Stephen Hawking has argued for space colonization as a means of saving humanity. In 2001, Hawking predicted that the human race would become extinct within the next thousand years, unless colonies could be established in space.[8] In 2006, he stated that humanity faces two options: either we colonize space within the next two hundred years and build residential units on other planets, or we will face the prospect of long-term extinction.[9]

In 2005, then NASA Administrator Michael Griffin identified space colonization as the ultimate goal of current spaceflight programs, saying:

…the goal isn’t just scientific exploration… it’s also about extending the range of human habitat out from Earth into the solar system as we go forward in time… In the long run a single-planet species will not survive… If we humans want to survive for hundreds of thousands or millions of years, we must ultimately populate other planets. Now, today the technology is such that this is barely conceivable. We’re in the infancy of it…. I’m talking about that one day, I don’t know when that day is, but there will be more human beings who live off the Earth than on it. We may well have people living on the Moon. We may have people living on the moons of Jupiter and other planets. We may have people making habitats on asteroids… I know that humans will colonize the solar system and one day go beyond.[10]

Louis J. Halle, formerly of the United States Department of State, wrote in Foreign Affairs (Summer 1980) that the colonization of space will protect humanity in the event of global nuclear warfare.[11] The physicist Paul Davies also supports the view that if a planetary catastrophe threatens the survival of the human species on Earth, a self-sufficient colony could “reverse-colonize” Earth and restore human civilization. The author and journalist William E. Burrows and the biochemist Robert Shapiro proposed a private project, the Alliance to Rescue Civilization, with the goal of establishing an off-Earth “backup” of human civilization.[12]

Based on his Copernican principle, J. Richard Gott has estimated that the human race could survive for another 7.8 million years, but it is not likely to ever colonize other planets. However, he expressed a hope to be proven wrong, because “colonizing other worlds is our best chance to hedge our bets and improve the survival prospects of our species”.[13]

Resources in space, both in materials and energy, are enormous. The Solar System alone has, according to different estimates, enough material and energy to support anywhere from several thousand to over a billion times that of the current Earth-based human population.[14][15][16] Outside the Solar System, several hundred billion other stars in the observable universe provide opportunities for both colonization and resource collection, though travel to any of them is impossible on any practical time-scale without the use of generation ships or revolutionary new methods of travel, such as faster-than-light (FTL) engines.

All these planets and other bodies offer a virtually endless supply of resources providing limitless growth potential. Harnessing these resources can lead to much economic development.[17]

Expansion of humans and technological progress has usually resulted in some form of environmental devastation, and destruction of ecosystems and their accompanying wildlife. In the past, expansion has often come at the expense of displacing many indigenous peoples, the resulting treatment of these peoples ranging anywhere from encroachment to full-blown genocide. Because space has no known life, this need not be a consequence, as some space settlement advocates have pointed out.[18][19]

Another argument for space colonization is to mitigate the negative effects of overpopulation.[clarification needed] If the resources of space were opened to use and viable life-supporting habitats were built, Earth would no longer define the limitations of growth. Although many of Earth’s resources are non-renewable, off-planet colonies could satisfy the majority of the planet’s resource requirements. With the availability of extraterrestrial resources, demand on terrestrial ones would decline.[20]

Additional goals cite the innate human drive to explore and discover, a quality recognized at the core of progress and thriving civilizations.[21][22]

Nick Bostrom has argued that from a utilitarian perspective, space colonization should be a chief goal as it would enable a very large population to live for a very long period of time (possibly billions of years), which would produce an enormous amount of utility (or happiness).[23] He claims that it is more important to reduce existential risks to increase the probability of eventual colonization than to accelerate technological development so that space colonization could happen sooner. In his paper, he assumes that the created lives will have positive ethical value despite the problem of suffering.

In a 2001 interview with Freeman Dyson, J.Richard Gott and Sid Goldstein, they were asked for reasons why some humans should live in space.[5] Their answers were:

There would be a very high initial investment cost for space colonies and any other permanent space infrastructure due to the high cost of getting into space. However, proponents argue that the long-term vision of developing space infrastructure will provide long-term benefits far in excess of the initial start-up costs.[citation needed]

Because current space launch costs are so high ($4,000 to $40,000 per kilogram), any serious plans for space colonization must include developing low-cost access to space followed by developing in-situ resource utilization. Therefore, the initial investments must be made in the development of low-cost access to space followed by an initial capacity to provide these necessities: materials, energy, propellant, communication, life support, radiation protection, self-replication, and population.[citation needed]

Although some items of the infrastructure requirements above can already be easily produced on Earth and would therefore not be very valuable as trade items (oxygen, water, base metal ores, silicates, etc.), other high value items are more abundant, more easily produced, of higher quality, or can only be produced in space. These would provide (over the long-term) a very high return on the initial investment in space infrastructure.[24]

Some of these high-value trade goods include precious metals,[25][26] gemstones,[27] power,[28] solar cells,[29] ball bearings,[29] semi-conductors,[29] and pharmaceuticals.[29]

…the smallest Earth-crossing asteroid 3554 Amun… is a mile-wide (2km) lump of iron, nickel, cobalt, platinum, and other metals; it contains 30 times as much metal as Humans have mined throughout history, although it is only the smallest of dozens of known metallic asteroids and worth perhaps US$ 20 trillion if mined slowly to meet demand at 2001 market prices.[25]

Space colonization is seen as a long-term goal of some national space programs. Since the advent of the 21st-century commercialization of space, which saw greater cooperation between NASA and the private sector, several private companies have announced plans toward the colonization of Mars. Among entrepreneurs leading the call for space colonization are Elon Musk, Dennis Tito and Bas Lansdorp.[30][31][32]

Potential sites for space colonies include the Moon, Mars, asteroids and free-floating space habitats. Ample quantities of all the necessary materials, such as solar energy and water, are available from or on the Moon, Mars, near-Earth asteroids or other planetary bodies.

The main impediments to commercial exploitation of these resources are the very high cost of initial investment,[33] the very long period required for the expected return on those investments (The Eros Project plans a 50-year development),[34] and the fact that the venture has never been carried out before the high-risk nature of the investment.

Major governments and well-funded corporations have announced plans for new categories of activities: space tourism and hotels, prototype space-based solar-power satellites, heavy-lift boosters and asteroid miningthat create needs and capabilities for humans to be present in space.[35][36][37]

There are two main types of space colonies:

There is considerable debate among space settlement advocates as to which type (and associated locations) represents the better option for expanding humanity into space.[citation needed]

Locations in space would necessitate a space habitat, also called space colony and orbital colony, or a space station which would be intended as a permanent settlement rather than as a simple waystation or other specialized facility. They would be literal “cities” in space, where people would live and work and raise families. Many designs have been proposed with varying degrees of realism by both science fiction authors and scientists. Such a space habitat could be isolated from the rest of humanity but near enough to Earth for help. This would test if thousands of humans can survive on their own before sending them beyond the reach of help.

Building colonies in space would require access to water, food, space, people, construction materials, energy, transportation, communications, life support, simulated gravity, radiation protection and capital investment. It is likely the colonies would be located near the necessary physical resources. The practice of space architecture seeks to transform spaceflight from a heroic test of human endurance to a normality within the bounds of comfortable experience. As is true of other frontier opening endeavors, the capital investment necessary for space colonization would probably come from the state,[38] an argument made by John Hickman[39] and Neil deGrasse Tyson.[40]

Colonies on the Moon, Mars, or asteroids could extract local materials. The Moon is deficient in volatiles such as argon, helium and compounds of carbon, hydrogen and nitrogen. The LCROSS impacter was targeted at the Cabeus crater which was chosen as having a high concentration of water for the Moon. A plume of material erupted in which some water was detected. Mission chief scientist Anthony Colaprete estimated that the Cabeus crater contains material with 1% water or possibly more.[41] Water ice should also be in other permanently shadowed craters near the lunar poles. Although helium is present only in low concentrations on the Moon, where it is deposited into regolith by the solar wind, an estimated million tons of He-3 exists over all.[42] It also has industrially significant oxygen, silicon, and metals such as iron, aluminum, and titanium.

Launching materials from Earth is expensive, so bulk materials for colonies could come from the Moon, a near-Earth object (NEO), Phobos, or Deimos. The benefits of using such sources include: a lower gravitational force, there is no atmospheric drag on cargo vessels, and there is no biosphere to damage. Many NEOs contain substantial amounts of metals. Underneath a drier outer crust (much like oil shale), some other NEOs are inactive comets which include billions of tons of water ice and kerogen hydrocarbons, as well as some nitrogen compounds.[43]

Farther out, Jupiter’s Trojan asteroids are thought to be rich in water ice and other volatiles.[44]

Recycling of some raw materials would almost certainly be necessary.

Solar energy in orbit is abundant, reliable, and is commonly used to power satellites today. There is no night in free space, and no clouds or atmosphere to block sunlight. Light intensity obeys an inverse-square law. So the solar energy available at distance d from the Sun is E = 1367/d2 W/m2, where d is measured in astronomical units (AU) and 1367 watts/m2 is the energy available at the distance of Earth’s orbit from the Sun, 1 AU.[45]

In the weightlessness and vacuum of space, high temperatures for industrial processes can easily be achieved in solar ovens with huge parabolic reflectors made of metallic foil with very lightweight support structures. Flat mirrors to reflect sunlight around radiation shields into living areas (to avoid line-of-sight access for cosmic rays, or to make the Sun’s image appear to move across their “sky”) or onto crops are even lighter and easier to build.

Large solar power photovoltaic cell arrays or thermal power plants would be needed to meet the electrical power needs of the settlers’ use. In developed nations on Earth, electrical consumption can average 1 kilowatt/person (or roughly 10 megawatt-hours per person per year.)[46] These power plants could be at a short distance from the main structures if wires are used to transmit the power, or much farther away with wireless power transmission.

A major export of the initial space settlement designs was anticipated to be large solar power satellites that would use wireless power transmission (phase-locked microwave beams or lasers emitting wavelengths that special solar cells convert with high efficiency) to send power to locations on Earth, or to colonies on the Moon or other locations in space. For locations on Earth, this method of getting power is extremely benign, with zero emissions and far less ground area required per watt than for conventional solar panels. Once these satellites are primarily built from lunar or asteroid-derived materials, the price of SPS electricity could be lower than energy from fossil fuel or nuclear energy; replacing these would have significant benefits such as elimination of greenhouse gases and nuclear waste from electricity generation.

However, the value of SPS power delivered wirelessly to other locations in space will typically be far higher than to locations on Earth. Otherwise, the means of generating the power would need to be included with these projects and pay the heavy penalty of Earth launch costs. Therefore, other than proposed demonstration projects for power delivered to Earth,[36] the first priority for SPS electricity is likely to be locations in space, such as communications satellites, fuel depots or “orbital tugboat” boosters transferring cargo and passengers between Low-Earth Orbit (LEO) and other orbits such as Geosynchronous orbit (GEO), lunar orbit or Highly-Eccentric Earth Orbit (HEEO).[47]:132

Nuclear power is sometimes proposed for colonies located on the Moon or on Mars, as the supply of solar energy is too discontinuous in these locations: The Moon has nights of two Earth weeks in duration. Mars has nights, relatively high gravity, and an atmosphere featuring large dust storms to cover and degrade solar panels. Also, Mars’ greater distance from the Sun (1.5 astronomical units, AU) translates into E/(1.52 = 2.25) only – the solar energy of Earth orbit.[48] Another method would be transmitting energy wirelessly to the lunar or Martian colonies from solar power satellites (SPSs) as described abovenote again that the difficulties of generating power in these locations make the relative advantages of SPSs much greater there than for power beamed to locations on Earth.

For both solar thermal and nuclear power generation in airless environments, such as the Moon and space, and to a lesser extent the very thin Martian atmosphere, one of the main difficulties is dispersing the inevitable heat generated. This requires fairly large radiator areas.

Transportation to orbit is often the limiting factor in space endeavours. To settle space, much cheaper launch vehicles are required, as well as a way to avoid serious damage to the atmosphere from the thousands, perhaps millions, of launches required.[citation needed] One possibility is the air-breathing hypersonic spaceplane under development by NASA and other organizations, both public and private. Other proposed projects include skyhooks, space elevators, mass drivers, launch loops, and StarTrams.

Transportation of large quantities of materials from the Moon, Phobos, Deimos, and near-Earth asteroids to orbital settlement construction sites is likely to be necessary.

Transportation using off-Earth resources for propellant in conventional rockets would be expected to massively reduce in-space transportation costs compared to the present day. Propellant launched from the Earth is likely to be prohibitively expensive for space colonization, even with improved space access costs.

Other technologies such as tether propulsion, VASIMR, ion drives, solar thermal rockets, solar sails, magnetic sails, electric sails, and nuclear thermal propulsion can all potentially help solve the problems of high transport cost once in space.

For lunar materials, one well-studied possibility is to build mass drivers to launch bulk materials to waiting settlements. Alternatively, lunar space elevators might be employed.

Lunar rovers and Mars rovers are common features of proposed colonies for those bodies. Space suits would likely be needed for excursions, maintenance, and safety.

Compared to the other requirements, communication is easy for orbit and the Moon. A great proportion of current terrestrial communications already passes through satellites. Yet, as colonies further from the Earth are considered, communication becomes more of a burden. Transmissions to and from Mars suffer from significant delays due to the finitude of the speed of light and the greatly varying distance between conjunction and oppositionthe lag will range between 7 and 44 minutesmaking real-time communication impractical. Other means of communication that do not require live interaction such as e-mail and voice mail systems should pose no problem.

In space settlements, a life support system must recycle or import all the nutrients without “crashing.” The closest terrestrial analogue to space life support is possibly that of a nuclear submarine. Nuclear submarines use mechanical life support systems to support humans for months without surfacing, and this same basic technology could presumably be employed for space use. However, nuclear submarines run “open loop”extracting oxygen from seawater, and typically dumping carbon dioxide overboard, although they recycle existing oxygen.[citation needed] Recycling of the carbon dioxide has been approached in the literature using the Sabatier process or the Bosch reaction.

Although a fully mechanistic life support system is conceivable, a closed ecological system is generally proposed for life support. The Biosphere 2 project in Arizona has shown that a complex, small, enclosed, man-made biosphere can support eight people for at least a year, although there were many problems. A year or so into the two-year mission oxygen had to be replenished, which strongly suggests that they achieved atmospheric closure.

The relationship between organisms, their habitat and the non-Earth environment can be:

A combination of the above technologies is also possible.

Cosmic rays and solar flares create a lethal radiation environment in space. In Earth orbit, the Van Allen belts make living above the Earth’s atmosphere difficult. To protect life, settlements must be surrounded by sufficient mass to absorb most incoming radiation, unless magnetic or plasma radiation shields were developed.[51]

Passive mass shielding of four metric tons per square meter of surface area will reduce radiation dosage to several mSv or less annually, well below the rate of some populated high natural background areas on Earth.[52] This can be leftover material (slag) from processing lunar soil and asteroids into oxygen, metals, and other useful materials. However, it represents a significant obstacle to maneuvering vessels with such massive bulk (mobile spacecraft being particularly likely to use less massive active shielding).[51] Inertia would necessitate powerful thrusters to start or stop rotation, or electric motors to spin two massive portions of a vessel in opposite senses. Shielding material can be stationary around a rotating interior.

Space manufacturing could enable self-replication. Some think it the ultimate goal because it allows an exponential increase in colonies, while eliminating costs to and dependence on Earth.[53] It could be argued that the establishment of such a colony would be Earth’s first act of self-replication.[54] Intermediate goals include colonies that expect only information from Earth (science, engineering, entertainment) and colonies that just require periodic supply of light weight objects, such as integrated circuits, medicines, genetic material and tools.

The monotony and loneliness that comes from a prolonged space mission can leave astronauts susceptible to cabin fever or having a psychotic break. Moreover, lack of sleep, fatigue, and work overload can affect an astronaut’s ability to perform well in an environment such as space where every action is critical.[55]

In 2002, the anthropologist John H. Moore estimated that a population of 150180 would permit a stable society to exist for 60 to 80 generations equivalent to 2000 years.

A much smaller initial population of as little as two women should be viable as long as human embryos are available from Earth. Use of a sperm bank from Earth also allows a smaller starting base with negligible inbreeding.

Researchers in conservation biology have tended to adopt the “50/500” rule of thumb initially advanced by Franklin and Soule. This rule says a short-term effective population size (Ne) of 50 is needed to prevent an unacceptable rate of inbreeding, whereas a longterm Ne of 500 is required to maintain overall genetic variability. The Ne=50 prescription corresponds to an inbreeding rate of 1% per generation, approximately half the maximum rate tolerated by domestic animal breeders. The Ne=500 value attempts to balance the rate of gain in genetic variation due to mutation with the rate of loss due to genetic drift.

Location is a frequent point of contention between space colonization advocates. The location of colonization can be on a physical body or free-flying:

Compared to other locations, Earth orbit has substantial advantages and one major, but solvable, problem. Orbits close to Earth can be reached in hours, whereas the Moon is days away and trips to Mars take months. There is ample continuous solar power in high Earth orbits. The level of (pseudo-) gravity can be controlled at any desired level by rotating an orbital colony.

The main disadvantage of orbital colonies is lack of materials. These may be expensively imported from the Earth, or more cheaply from extraterrestrial sources, such as the Moon (which has ample metals, silicon, and oxygen), near-Earth asteroids, comets, or elsewhere. As of 2016[update], the International Space Station provides a temporary, yet still non-autonomous, human presence in low Earth orbit.

Due to its proximity and familiarity, Earth’s Moon is discussed as a target for colonization. It has the benefits of proximity to Earth and lower escape velocity, allowing for easier exchange of goods and services. A drawback of the Moon is its low abundance of volatiles necessary for life such as hydrogen, nitrogen, and carbon. Water-ice deposits that exist in some polar craters could serve as a source for these elements. An alternative solution is to bring hydrogen from near-Earth asteroids and combine it with oxygen extracted from lunar rock.

The Moon’s low surface gravity is also a concern, as it is unknown whether 1/6g is enough to maintain human health for long periods.

Another near-Earth possibility are the five EarthMoon Lagrange points. Although they would generally also take a few days to reach with current technology, many of these points would have near-continuous solar power because their distance from Earth would result in only brief and infrequent eclipses of light from the Sun. However, the fact that the EarthMoon Lagrange points L4 and L5 tend to collect dust and debris, whereas L1-L3 require active station-keeping measures to maintain a stable position, make them somewhat less suitable places for habitation than was originally believed. Additionally, the orbit of L2L5 takes them out of the protection of the Earth’s magnetosphere for approximately two-thirds of the time, exposing them to the health threat from cosmic rays.

The five EarthSun Lagrange points would totally eliminate eclipses, but only L1 and L2 would be reachable in a few days’ time. The other three EarthSun points would require months to reach.

Many small asteroids in orbit around the Sun have the advantage that they pass closer than Earth’s moon several times per decade. In between these close approaches to home, the asteroid may travel out to a furthest distance of some 350,000,000 kilometers from the Sun (its aphelion) and 500,000,000 kilometers from Earth.

The surface of Mars is about the same size as the dry land surface of Earth. The ice in Mars’ south polar cap, if spread over the planet, would be a layer 12 meters (39 feet) thick[56] and there is carbon (locked as carbon dioxide in the atmosphere).

Mars may have gone through similar geological and hydrological processes as Earth and therefore might contain valuable mineral ores. Equipment is available to extract in situ resources (e.g. water, air) from the Martian ground and atmosphere. There is interest in colonizing Mars in part because life could have existed on Mars at some point in its history, and may even still exist in some parts of the planet.[citation needed]

However, its atmosphere is very thin (averaging 800 Pa or about 0.8% of Earth sea-level atmospheric pressure); so the pressure vessels necessary to support life are very similar to deep-space structures. The climate of Mars is colder than Earth’s. The dust storms block out most of the sun’s light for a month or more at a time. Its gravity is only around a third that of Earth’s; it is unknown whether this is sufficient to support human beings for extended periods (all long-term human experience to date has been at around Earth gravity, or one g).

The atmosphere is thin enough, when coupled with Mars’ lack of magnetic field, that radiation is more intense on the surface, and protection from solar storms would require radiation shielding.

Terraforming Mars would make life outside pressure vessels on the surface possible. There is some discussion of it actually being done.[citation needed]

The moons of Mars may be a target for space colonization. Low delta-v is needed to reach Earth from Phobos and Deimos, allowing delivery of material to cislunar space, as well as transport around the Martian system. The moons themselves may be suitable for habitation, with methods similar to those for asteroids.

While the surface of Venus is far too hot and features atmospheric pressure at least 90 times that at sea level on Earth, its massive atmosphere offers a possible alternate location for colonization. At an altitude of approximately 50km, the pressure is reduced to a few atmospheres, and the temperature would be between 40100C, depending on the altitude. This part of the atmosphere is probably within dense clouds which contain some sulfuric acid. Even these may have a certain benefit to colonization, as they present a possible source for the extraction of water.

Because of Mercury’s extremely small axial tilt, there is a suggestion that Mercury’s polar regions could be colonized using the same technology, approach, and equipment that is used in colonizing the Moon. Polar colonies on Mercury would avoid the extreme daytime temperatures elsewhere on the planetthe temperatures on the poles are consistently below 93C (135F). Moreover, “Mercurys very low axial tilt (0.034) means that its polar regions are permanently shaded and cold enough to contain water ice.”[57]

Observations of Mercury’s polar regions by radar from Earth and the MESSENGER spacecraft have been consistent with water ice and/or other frozen volatiles being present in permanently shadowed areas of craters in Mercury’s polar regions.[58] Measurements of Mercury’s exosphere, which is practically a vacuum, revealed more ions derived from water than scientists had expected.[59] These volatiles would be available to hypothetical future colonists of Mercury.[57]

Compared on the Moon, solar panels on Mercury would be exposed to far more energythe intensity ranges from approximately four and a half times to more than ten times the intensity at one astronomical unit. In addition, the solar energy available to a colony on Mercury would never be blocked by an eclipse. On the other hand, it would need to deal with the far greater variance of solar intensity, which is a product of the planet’s highly elliptical orbit.[57]

Colonization of asteroids would require space habitats. The asteroid belt has significant overall material available, the largest object being Ceres, although it is thinly distributed as it covers a vast region of space. Unmanned supply craft should be practical with little technological advance, even crossing 1/2 billion kilometers of cold vacuum. The colonists would have a strong interest in assuring that their asteroid did not hit Earth or any other body of significant mass, but would have extreme difficulty in moving an asteroid of any size. The orbits of the Earth and most asteroids are very distant from each other in terms of delta-v and the asteroidal bodies have enormous momentum. Rockets or mass drivers can perhaps be installed on asteroids to direct their path into a safe course.

Ceres is a dwarf planet in the asteroid belt, comprising about one third the mass of the whole belt and being the sixth largest body in the inner Solar System by mass and volume. Ceres has a surface area somewhat larger than Argentina. Being the largest body in the asteroid belt, Ceres could become the main base and transport hub for future asteroid mining infrastructure, allowing mineral resources to be transported further to Mars, the Moon and Earth. See further: Main-Belt Asteroids. It may be possible to paraterraform Ceres, making life easier for the colonists. Given its low gravity and fast rotation, a space elevator would also be practical.

The Artemis Project designed a plan to colonize Europa, one of Jupiter’s moons. Scientists were to inhabit igloos and drill down into the Europan ice crust, exploring any sub-surface ocean. This plan discusses possible use of “air pockets” for human habitation. Europa is considered one of the more habitable bodies in the Solar System and so merits investigation as a possible abode for life.

Ganymede is the largest moon in the Solar System. It may be attractive as Ganymede is the only moon with a magnetosphere and so is less irradiated at the surface. The presence of magnetosphere, likely indicates a convecting molten core within Ganymede, which may in turn indicate a rich geologic history for the moon.

NASA performed a study called HOPE (Revolutionary Concepts for Human Outer Planet Exploration) regarding the future exploration of the Solar System.[60] The target chosen was Callisto due to its distance from Jupiter, and thus the planet’s harmful radiation. It could be possible to build a surface base that would produce fuel for further exploration of the Solar System.

The three out of four largest moons of Jupiter (Europa, Ganymede and Callisto) have an abundance of volatiles making future colonization possible.

Titan is suggested as a target for colonization,[61] because it is the only moon in the Solar System to have a dense atmosphere and is rich in carbon-bearing compounds.[62]Robert Zubrin identified Titan as possessing an abundance of all the elements necessary to support life, making Titan perhaps the most advantageous locale in the outer Solar System for colonization, and saying “In certain ways, Titan is the most hospitable extraterrestrial world within our solar system for human colonization”.

Enceladus is a small, icy moon orbiting close to Saturn, notable for its extremely bright surface and the geyser-like plumes of ice and water vapor that erupt from its southern polar region. If Enceladus has liquid water, it joins Mars and Jupiter’s moon Europa as one of the prime places in the Solar System to look for extraterrestrial life and possible future settlements.

Other large satellites: Rhea, Iapetus, Dione, Tethys, and Mimas, all have large quantities of volatiles, which can be used to support settlement.

Although they are very cold, the five large moons of Uranus (Miranda, Ariel, Umbriel, Titania and Oberon) and TritonNeptune’s largest moonhave large amounts of frozen water and other volatiles and could potentially be settled. However, habitats there would require a lot of nuclear power to sustain a habitable temperature. Triton’s thin atmosphere also contains some nitrogen and even some frozen nitrogen on the surface (the surface temperature is 38 K or about -391Fahrenheit).

The Kuiper belt is estimated to have 70,000 bodies of 100km or larger.

Freeman Dyson has suggested that within a few centuries human civilization will have relocated to the Kuiper belt.[63]

The Oort cloud is estimated to have up to a trillion comets.

Statites or “static satellites” employ solar sails to position themselves in orbits that gravity alone could not accomplish. Such a solar sail colony would be free to ride solar radiation pressure and travel off the ecliptic plane. Navigational computers with an advanced understanding of flocking behavior could organize several statite colonies into the beginnings of the true “swarm” concept of a Dyson sphere.

It may be possible to colonize the three farthest giant planets that is, Saturn, Uranus and Neptune with floating cities in their atmospheres. By heating hydrogen balloons, large masses can be suspended underneath at roughly Earth-like gravity. A human colony on Jupiter would be less practical due to its high gravity, escape velocity, and radiation. Such colonies could export helium-3 for use in fusion reactors if they ever become operational. Escape from the giant planets, especially Jupiter, seems well beyond current or near-term foreseeable chemical-rocket technology due to the combination of large velocity and high acceleration needed to even achieve low orbit.

Looking beyond the Solar System, there are up to several hundred billion potential stars with possible colonization targets. The main difficulty is the vast distances to other stars: roughly a hundred thousand times further away than the planets in the Solar System. This means that some combination of very high speed (some percentage of the speed of light), or travel times lasting centuries or millennia, would be required. These speeds are far beyond what current spacecraft propulsion systems can provide.

Many scientific papers have been published about interstellar travel. Given sufficient travel time and engineering work, both unmanned and generational voyages seem possible, though representing a very considerable technological and economic challenge unlikely to be met for some time, particularly for manned probes.[citation needed]

Space colonization technology could in principle allow human expansion at high, but sub-relativistic speeds, substantially less than the speed of light, c. An interstellar colony ship would be similar to a space habitat, with the addition of major propulsion capabilities and independent energy generation.

Hypothetical starship concepts proposed both by scientists and in hard science fiction include:

The above concepts all appear limited to high, but still sub-relativistic speeds, due to fundamental energy and reaction mass considerations, and all would entail trip times which might be enabled by space colonization technology, permitting self-contained habitats with lifetimes of decades to centuries. Yet human interstellar expansion at average speeds of even 0.1% of c would permit settlement of the entire Galaxy in less than one half of a galactic rotation period of ~250,000,000 years, which is comparable to the timescale of other galactic processes. Thus, even if interstellar travel at near relativistic speeds is never feasible (which cannot be clearly determined at this time), the development of space colonization could allow human expansion beyond the Solar System without requiring technological advances that cannot yet be reasonably foreseen. This could greatly improve the chances for the survival of intelligent life over cosmic timescales, given the many natural and human-related hazards that have been widely noted.

If humanity does gain access to a large amount of energy, on the order of the mass-energy of entire planets, it may eventually become feasible to construct Alcubierre drives. These are one of the few methods of superluminal travel which may be possible under current physics.

Looking beyond the Milky Way, there are about 100 billion other galaxies in the observable universe. The distances between galaxies are on the order of a million times further than those between the stars. Because of the speed of light limit on how fast any material objects can travel in space, intergalactic travel would either have to involve voyages lasting millions of years,[64] or a possible faster than light propulsion method based on speculative physics, such as the Alcubierre drive. There are, however, no scientific reasons for stating that intergalactic travel is impossible in principle.

Originally posted here:
Space colonization – Wikipedia

Posted in Moon Colonization | Comments Off on Space colonization – Wikipedia

Life extension – Wikipedia

Posted: November 10, 2016 at 5:35 pm

Life extension science, also known as anti-aging medicine, indefinite life extension, experimental gerontology, and biomedical gerontology, is the study of slowing down or reversing the processes of aging to extend both the maximum and average lifespan. Some researchers in this area, and “life extensionists”, “immortalists” or “longevists” (those who wish to achieve longer lives themselves), believe that future breakthroughs in tissue rejuvenation, stem cells, regenerative medicine, molecular repair, gene therapy, pharmaceuticals, and organ replacement (such as with artificial organs or xenotransplantations) will eventually enable humans to have indefinite lifespans (agerasia[1]) through complete rejuvenation to a healthy youthful condition.

The sale of purported anti-aging products such as nutrition, physical fitness, skin care, hormone replacements, vitamins, supplements and herbs is a lucrative global industry, with the US market generating about $50billion of revenue each year.[2] Some medical experts state that the use of such products has not been proven to affect the aging process and many claims regarding the efficacy of these marketed products have been roundly criticized by medical experts, including the American Medical Association.[2][3][4][5][6]

The ethical ramifications of life extension are debated by bioethicists.

During the process of aging, an organism accumulates damage to its macromolecules, cells, tissues, and organs. Specifically, aging is characterized as and thought to be caused by “genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication.”[7]Oxidation damage to cellular contents caused by free radicals is believed to contribute to aging as well.[8][8][9]

The longest a human has ever been proven to live is 122 years, the case of Jeanne Calment who was born in 1875 and died in 1997, whereas the maximum lifespan of a wildtype mouse, commonly used as a model in research on aging, is about three years.[10] Genetic differences between humans and mice that may account for these different aging rates include differences in efficiency of DNA repair, antioxidant defenses, energy metabolism, proteostasis maintenance, and recycling mechanisms such as autophagy.[11]

Average lifespan in a population is lowered by infant and child mortality, which are frequently linked to infectious diseases or nutrition problems. Later in life, vulnerability to accidents and age-related chronic disease such as cancer or cardiovascular disease play an increasing role in mortality. Extension of expected lifespan can often be achieved by access to improved medical care, vaccinations, good diet, exercise and avoidance of hazards such as smoking.

Maximum lifespan is determined by the rate of aging for a species inherent in its genes and by environmental factors. Widely recognized methods of extending maximum lifespan in model organisms such as nematodes, fruit flies, and mice include caloric restriction, gene manipulation, and administration of pharmaceuticals.[12] Another technique uses evolutionary pressures such as breeding from only older members or altering levels of extrinsic mortality.[13][14] Some animals such as hydra, planarian flatworms, and certain sponges, corals, and jellyfish do not die of old age and exhibit potential immortality.[15][16][17][18]

Theoretically, extension of maximum lifespan in humans could be achieved by reducing the rate of aging damage by periodic replacement of damaged tissues, molecular repair or rejuvenation of deteriorated cells and tissues, reversal of harmful epigenetic changes, or the enhancement of telomerase enzyme activity.[19][20]

Research geared towards life extension strategies in various organisms is currently under way at a number of academic and private institutions. Since 2009, investigators have found ways to increase the lifespan of nematode worms and yeast by 10-fold; the record in nematodes was achieved through genetic engineering and the extension in yeast by a combination of genetic engineering and caloric restriction.[21] A 2009 review of longevity research noted: “Extrapolation from worms to mammals is risky at best, and it cannot be assumed that interventions will result in comparable life extension factors. Longevity gains from dietary restriction, or from mutations studied previously, yield smaller benefits to Drosophila than to nematodes, and smaller still to mammals. This is not unexpected, since mammals have evolved to live many times the worm’s lifespan, and humans live nearly twice as long as the next longest-lived primate. From an evolutionary perspective, mammals and their ancestors have already undergone several hundred million years of natural selection favoring traits that could directly or indirectly favor increased longevity, and may thus have already settled on gene sequences that promote lifespan. Moreover, the very notion of a “life-extension factor” that could apply across taxa presumes a linear response rarely seen in biology.”[21]

Much life extension research focuses on nutritiondiets or supplementsas a means to extend lifespan, although few of these have been systematically tested for significant longevity effects. The many diets promoted by anti-aging advocates are often contradictory.[original research?] A dietary pattern with some support from scientific research is caloric restriction.[22][23]

Preliminary studies of caloric restriction on humans using surrogate measurements have provided evidence that caloric restriction may have powerful protective effect against secondary aging in humans. Caloric restriction in humans may reduce the risk of developing Type 2 diabetes and atherosclerosis.[24]

The free-radical theory of aging suggests that antioxidant supplements, such as vitaminC, vitaminE, Q10, lipoic acid, carnosine, and N-acetylcysteine, might extend human life. However, combined evidence from several clinical trials suggest that -carotene supplements and high doses of vitaminE increase mortality rates.[25]Resveratrol is a sirtuin stimulant that has been shown to extend life in animal models, but the effect of resveratrol on lifespan in humans is unclear as of 2011.[26]

There are many traditional herbs purportedly used to extend the health-span, including a Chinese tea called Jiaogulan (Gynostemma pentaphyllum), dubbed “China’s Immortality Herb.”[27]Ayurveda, the traditional Indian system of medicine, describes a class of longevity herbs called rasayanas, including Bacopa monnieri, Ocimum sanctum, Curcuma longa, Centella asiatica, Phyllanthus emblica, Withania somnifera and many others.[27]

The anti-aging industry offers several hormone therapies. Some of these have been criticized for possible dangers to the patient and a lack of proven effect. For example, the American Medical Association has been critical of some anti-aging hormone therapies.[2]

Although some recent clinical studies have shown that low-dose growth hormone (GH) treatment for adults with GH deficiency changes the body composition by increasing muscle mass, decreasing fat mass, increasing bone density and muscle strength, improves cardiovascular parameters (i.e. decrease of LDL cholesterol), and affects the quality of life without significant side effects,[28][29][30] the evidence for use of growth hormone as an anti-aging therapy is mixed and based on animal studies. There are mixed reports that GH or IGF-1 signaling modulates the aging process in humans and about whether the direction of its effect is positive or negative.[31]

Some critics dispute the portrayal of aging as a disease. For example, Leonard Hayflick, who determined that fibroblasts are limited to around 50cell divisions, reasons that aging is an unavoidable consequence of entropy. Hayflick and fellow biogerontologists Jay Olshansky and Bruce Carnes have strongly criticized the anti-aging industry in response to what they see as unscrupulous profiteering from the sale of unproven anti-aging supplements.[4]

Politics relevant to the substances of life extension pertain mostly to communications and availability.[citation needed]

In the United States, product claims on food and drug labels are strictly regulated. The First Amendment (freedom of speech) protects third-party publishers’ rights to distribute fact, opinion and speculation on life extension practices. Manufacturers and suppliers also provide informational publications, but because they market the substances, they are subject to monitoring and enforcement by the Federal Trade Commission (FTC), which polices claims by marketers. What constitutes the difference between truthful and false claims is hotly debated and is a central controversy in this arena.[citation needed]

Research by Sobh and Martin (2011) suggests that people buy anti-aging products to obtain a hoped-for self (e.g., keeping a youthful skin) or to avoid a feared-self (e.g., looking old). The research shows that when consumers pursue a hoped-for self, it is expectations of success that most strongly drive their motivation to use the product. The research also shows why doing badly when trying to avoid a feared self is more motivating than doing well. Interestingly, when product use is seen to fail it is more motivating than success when consumers seek to avoid a feared-self.[32]

The best-characterized anti-aging therapy was, and still is, CR. In some studies calorie restriction has been shown to extend the life of mice, yeast, and rhesus monkeys significantly.[33][34] However, a more recent study has shown that in contrast, calorie restriction has not improved the survival rate in rhesus monkeys.[35] Long-term human trials of CR are now being done. It is the hope of the anti-aging researchers that resveratrol, found in grapes, or pterostilbene, a more bio-available substance, found in blueberries, as well as rapamycin, a biotic substance discovered on Easter Island, may act as CR mimetics to increase the life span of humans.[36]

More recent work reveals that the effects long attributed to caloric restriction may be obtained by restriction of protein alone, and specifically of just the sulfur-containing amino acids cysteine and methionine.[37][38] Current research is into the metabolic pathways affected by variation in availability of products of these amino acids.

There are a number of chemicals intended to slow the aging process currently being studied in animal models.[39] One type of research is related to the observed effects a calorie restriction (CR) diet, which has been shown to extend lifespan in some animals[40] Based on that research, there have been attempts to develop drugs that will have the same effect on the aging process as a caloric restriction diet, which are known as Caloric restriction mimetic drugs. Some drugs that are already approved for other uses have been studied for possible longevity effects on laboratory animals because of a possible CR-mimic effect; they include rapamycin,[41]metformin and other geroprotectors.[42]MitoQ, Resveratrol and pterostilbene are dietary supplements that have also been studied in this context.[36][43][44]

Other attempts to create anti-aging drugs have taken different research paths. One notable direction of research has been research into the possibility of using the enzyme telomerase in order to counter the process of telomere shortening.[45] However, there are potential dangers in this, since some research has also linked telomerase to cancer and to tumor growth and formation.[46] In addition, some preparations, called senolytics are designed to effectively deplete senescent cells which poison an organism by their secretions.[47]

Future advances in nanomedicine could give rise to life extension through the repair of many processes thought to be responsible for aging. K. Eric Drexler, one of the founders of nanotechnology, postulated cell repair machines, including ones operating within cells and utilizing as yet hypothetical molecular computers, in his 1986 book Engines of Creation. Raymond Kurzweil, a futurist and transhumanist, stated in his book The Singularity Is Near that he believes that advanced medical nanorobotics could completely remedy the effects of aging by 2030.[48] According to Richard Feynman, it was his former graduate student and collaborator Albert Hibbs who originally suggested to him (circa 1959) the idea of a medical use for Feynman’s theoretical micromachines (see nanotechnology). Hibbs suggested that certain repair machines might one day be reduced in size to the point that it would, in theory, be possible to (as Feynman put it) “swallow the doctor”. The idea was incorporated into Feynman’s 1959 essay There’s Plenty of Room at the Bottom.[49]

Some life extensionists suggest that therapeutic cloning and stem cell research could one day provide a way to generate cells, body parts, or even entire bodies (generally referred to as reproductive cloning) that would be genetically identical to a prospective patient. Recently, the US Department of Defense initiated a program to research the possibility of growing human body parts on mice.[50] Complex biological structures, such as mammalian joints and limbs, have not yet been replicated. Dog and primate brain transplantation experiments were conducted in the mid-20th century but failed due to rejection and the inability to restore nerve connections. As of 2006, the implantation of bio-engineered bladders grown from patients’ own cells has proven to be a viable treatment for bladder disease.[51] Proponents of body part replacement and cloning contend that the required biotechnologies are likely to appear earlier than other life-extension technologies.

The use of human stem cells, particularly embryonic stem cells, is controversial. Opponents’ objections generally are based on interpretations of religious teachings or ethical considerations. Proponents of stem cell research point out that cells are routinely formed and destroyed in a variety of contexts. Use of stem cells taken from the umbilical cord or parts of the adult body may not provoke controversy.[52]

The controversies over cloning are similar, except general public opinion in most countries stands in opposition to reproductive cloning. Some proponents of therapeutic cloning predict the production of whole bodies, lacking consciousness, for eventual brain transplantation.

Replacement of biological (susceptible to diseases) organs with mechanical ones could extend life. This is the goal of 2045 Initiative.[53]

For cryonicists (advocates of cryopreservation), storing the body at low temperatures after death may provide an “ambulance” into a future in which advanced medical technologies may allow resuscitation and repair. They speculate cryogenic temperatures will minimize changes in biological tissue for many years, giving the medical community ample time to cure all disease, rejuvenate the aged and repair any damage that is caused by the cryopreservation process.

Many cryonicists do not believe that legal death is “real death” because stoppage of heartbeat and breathingthe usual medical criteria for legal deathoccur before biological death of cells and tissues of the body. Even at room temperature, cells may take hours to die and days to decompose. Although neurological damage occurs within 46 minutes of cardiac arrest, the irreversible neurodegenerative processes do not manifest for hours.[54] Cryonicists state that rapid cooling and cardio-pulmonary support applied immediately after certification of death can preserve cells and tissues for long-term preservation at cryogenic temperatures. People, particularly children, have survived up to an hour without heartbeat after submersion in ice water. In one case, full recovery was reported after 45 minutes underwater.[55] To facilitate rapid preservation of cells and tissue, cryonics “standby teams” are available to wait by the bedside of patients who are to be cryopreserved to apply cooling and cardio-pulmonary support as soon as possible after declaration of death.[56]

No mammal has been successfully cryopreserved and brought back to life, with the exception of frozen human embryos. Resuscitation of a postembryonic human from cryonics is not possible with current science. Some scientists still support the idea based on their expectations of the capabilities of future science.[57][58]

Another proposed life extension technology would combine existing and predicted future biochemical and genetic techniques. SENS proposes that rejuvenation may be obtained by removing aging damage via the use of stem cells and tissue engineering, telomere-lengthening machinery, allotopic expression of mitochondrial proteins, targeted ablation of cells, immunotherapeutic clearance, and novel lysosomal hydrolases.[59]

While many biogerontologists find these ideas “worthy of discussion”[60][61] and SENS conferences feature important research in the field,[62][63] some contend that the alleged benefits are too speculative given the current state of technology, referring to it as “fantasy rather than science”.[3][5]

Gene therapy, in which nucleic acid polymers are delivered as a drug and are either expressed as proteins, interfere with the expression of proteins, or correct genetic mutations, has been proposed as a future strategy to prevent aging.[64][65]

A large array of genetic modifications have been found to increase lifespan in model organisms such as yeast, nematode worms, fruit flies, and mice. As of 2013, the longest extension of life caused by a single gene manipulation was roughly 150% in mice and 10-fold in nematode worms.[66]

In The Selfish Gene, Richard Dawkins describes an approach to life-extension that involves “fooling genes” into thinking the body is young.[67] Dawkins attributes inspiration for this idea to Peter Medawar. The basic idea is that our bodies are composed of genes that activate throughout our lifetimes, some when we are young and others when we are older. Presumably, these genes are activated by environmental factors, and the changes caused by these genes activating can be lethal. It is a statistical certainty that we possess more lethal genes that activate in later life than in early life. Therefore, to extend life, we should be able to prevent these genes from switching on, and we should be able to do so by “identifying changes in the internal chemical environment of a body that take place during aging… and by simulating the superficial chemical properties of a young body”.[68]

According to some lines of thinking, the ageing process is routed into a basic reduction of biological complexity,[69] and thus loss of information. In order to reverse this loss, gerontologist Marios Kyriazis suggested that it is necessary to increase input of actionable and meaningful information both individually (into individual brains),[70] and collectively (into societal systems).[71] This technique enhances overall biological function through up-regulation of immune, hormonal, antioxidant and other parameters, resulting in improved age-repair mechanisms. Working in parallel with natural evolutionary mechanisms that can facilitate survival through increased fitness, Kryiazis claims that the technique may lead to a reduction of the rate of death as a function of age, i.e. indefinite lifespan.[72]

One hypothetical future strategy that, as some suggest, “eliminates” the complications related to a physical body, involves the copying or transferring (e.g. by progressively replacing neurons with transistors) of a conscious mind from a biological brain to a non-biological computer system or computational device. The basic idea is to scan the structure of a particular brain in detail, and then construct a software model of it that is so faithful to the original that, when run on appropriate hardware, it will behave in essentially the same way as the original brain.[73] Whether or not an exact copy of one’s mind constitutes actual life extension is matter of debate.

The extension of life has been a desire of humanity and a mainstay motif in the history of scientific pursuits and ideas throughout history, from the Sumerian Epic of Gilgamesh and the Egyptian Smith medical papyrus, all the way through the Taoists, Ayurveda practitioners, alchemists, hygienists such as Luigi Cornaro, Johann Cohausen and Christoph Wilhelm Hufeland, and philosophers such as Francis Bacon, Ren Descartes, Benjamin Franklin and Nicolas Condorcet. However, the beginning of the modern period in this endeavor can be traced to the end of the 19th beginning of the 20th century, to the so-called fin-de-sicle (end of the century) period, denoted as an end of an epoch and characterized by the rise of scientific optimism and therapeutic activism, entailing the pursuit of life extension (or life-extensionism). Among the foremost researchers of life extension at this period were the Nobel Prize winning biologist Elie Metchnikoff (1845-1916) — the author of the cell theory of immunity and vice director of Institut Pasteur in Paris, and Charles-douard Brown-Squard (1817-1894) — the president of the French Biological Society and one of the founders of modern endocrinology.[74]

Sociologist James Hughes claims that science has been tied to a cultural narrative of conquering death since the Age of Enlightenment. He cites Francis Bacon (15611626) as an advocate of using science and reason to extend human life, noting Bacon’s novel New Atlantis, wherein scientists worked toward delaying aging and prolonging life. Robert Boyle (16271691), founding member of the Royal Society, also hoped that science would make substantial progress with life extension, according to Hughes, and proposed such experiments as “to replace the blood of the old with the blood of the young”. Biologist Alexis Carrel (18731944) was inspired by a belief in indefinite human lifespan that he developed after experimenting with cells, says Hughes.[75]

In 1970, the American Aging Association was formed under the impetus of Denham Harman, originator of the free radical theory of aging. Harman wanted an organization of biogerontologists that was devoted to research and to the sharing of information among scientists interested in extending human lifespan.

In 1976, futurists Joel Kurtzman and Philip Gordon wrote No More Dying. The Conquest Of Aging And The Extension Of Human Life, (ISBN 0-440-36247-4) the first popular book on research to extend human lifespan. Subsequently, Kurtzman was invited to testify before the House Select Committee on Aging, chaired by Claude Pepper of Florida, to discuss the impact of life extension on the Social Security system.

Saul Kent published The Life Extension Revolution (ISBN 0-688-03580-9) in 1980 and created a nutraceutical firm called the Life Extension Foundation, a non-profit organization that promotes dietary supplements. The Life Extension Foundation publishes a periodical called Life Extension Magazine. The 1982 bestselling book Life Extension: A Practical Scientific Approach (ISBN 0-446-51229-X) by Durk Pearson and Sandy Shaw further popularized the phrase “life extension”.

In 1983, Roy Walford, a life-extensionist and gerontologist, published a popular book called Maximum Lifespan. In 1988, Walford and his student Richard Weindruch summarized their research into the ability of calorie restriction to extend the lifespan of rodents in The Retardation of Aging and Disease by Dietary Restriction (ISBN 0-398-05496-7). It had been known since the work of Clive McCay in the 1930s that calorie restriction can extend the maximum lifespan of rodents. But it was the work of Walford and Weindruch that gave detailed scientific grounding to that knowledge.[citation needed] Walford’s personal interest in life extension motivated his scientific work and he practiced calorie restriction himself. Walford died at the age of 80 from complications caused by amyotrophic lateral sclerosis.

Money generated by the non-profit Life Extension Foundation allowed Saul Kent to finance the Alcor Life Extension Foundation, the world’s largest cryonics organization. The cryonics movement had been launched in 1962 by Robert Ettinger’s book, The Prospect of Immortality. In the 1960s, Saul Kent had been a co-founder of the Cryonics Society of New York. Alcor gained national prominence when baseball star Ted Williams was cryonically preserved by Alcor in 2002 and a family dispute arose as to whether Williams had really wanted to be cryopreserved.

Regulatory and legal struggles between the Food and Drug Administration (FDA) and the Life Extension Foundation included seizure of merchandise and court action. In 1991, Saul Kent and Bill Faloon, the principals of the Foundation, were jailed. The LEF accused the FDA of perpetrating a “Holocaust” and “seeking gestapo-like power” through its regulation of drugs and marketing claims.[76]

In 2003, Doubleday published “The Immortal Cell: One Scientist’s Quest to Solve the Mystery of Human Aging,” by Michael D. West. West emphasised the potential role of embryonic stem cells in life extension.[77]

Other modern life extensionists include writer Gennady Stolyarov, who insists that death is “the enemy of us all, to be fought with medicine, science, and technology”;[78]transhumanist philosopher Zoltan Istvan, who proposes that the “transhumanist must safeguard one’s own existence above all else”;[79] futurist George Dvorsky, who considers aging to be a problem that desperately needs to be solved;[80] and recording artist Steve Aoki, who has been called “one of the most prolific campaigners for life extension”.[81]

In 1991, the American Academy of Anti-Aging Medicine (A4M) was formed as a non-profit organization to create what it considered an anti-aging medical specialty distinct from geriatrics, and to hold trade shows for physicians interested in anti-aging medicine. The A4M trains doctors in anti-aging medicine and publicly promotes the field of anti-aging research. It has about 26,000 members, of whom about 97% are doctors and scientists.[82] The American Board of Medical Specialties recognizes neither anti-aging medicine nor the A4M’s professional standing.[83]

In 2003, Aubrey de Grey and David Gobel formed the Methuselah Foundation, which gives financial grants to anti-aging research projects. In 2009, de Grey and several others founded the SENS Research Foundation, a California-based scientific research organization which conducts research into aging and funds other anti-aging research projects at various universities.[84] In 2013, Google announced Calico, a new company based in San Francisco that will harness new technologies to increase scientific understanding of the biology of aging.[85] It is led by Arthur D. Levinson,[86] and its research team includes scientists such as Hal V. Barron, David Botstein, and Cynthia Kenyon. In 2014, biologist Craig Venter founded Human Longevity Inc., a company dedicated to scientific research to end aging through genomics and cell therapy. They received funding with the goal of compiling a comprehensive human genotype, microbiome, and phenotype database.[87]

Aside from private initiatives, aging research is being conducted in university laboratories, and includes universities such as Harvard and UCLA. University researchers have made a number of breakthroughs in extending the lives of mice and insects by reversing certain aspects of aging.[88][89][90][91]

Though many scientists state[92] that life extension and radical life extension are possible, there are still no international or national programs focused on radical life extension. There are political forces staying for and against life extension. By 2012, in Russia, the United States, Israel, and the Netherlands, the Longevity political parties started. They aimed to provide political support to radical life extension research and technologies, and ensure the fastest possible and at the same time soft transition of society to the next step life without aging and with radical life extension, and to provide access to such technologies to most currently living people.[93]

Leon Kass (chairman of the US President’s Council on Bioethics from 2001 to 2005) has questioned whether potential exacerbation of overpopulation problems would make life extension unethical.[94] He states his opposition to life extension with the words:

“simply to covet a prolonged life span for ourselves is both a sign and a cause of our failure to open ourselves to procreation and to any higher purpose … [The] desire to prolong youthfulness is not only a childish desire to eat one’s life and keep it; it is also an expression of a childish and narcissistic wish incompatible with devotion to posterity.”[95]

John Harris, former editor-in-chief of the Journal of Medical Ethics, argues that as long as life is worth living, according to the person himself, we have a powerful moral imperative to save the life and thus to develop and offer life extension therapies to those who want them.[96]

Transhumanist philosopher Nick Bostrom has argued that any technological advances in life extension must be equitably distributed and not restricted to a privileged few.[97] In an extended metaphor entitled “The Fable of the Dragon-Tyrant”, Bostrom envisions death as a monstrous dragon who demands human sacrifices. In the fable, after a lengthy debate between those who believe the dragon is a fact of life and those who believe the dragon can and should be destroyed, the dragon is finally killed. Bostrom argues that political inaction allowed many preventable human deaths to occur.[98]

Life extension is a controversial topic due to fear of overpopulation and possible effects on society.[99] Biogerontologist Aubrey De Grey counters the overpopulation critique by pointing out that the therapy could postpone or eliminate menopause, allowing women to space out their pregnancies over more years and thus decreasing the yearly population growth rate.[100] Moreover, the philosopher and futurist Max More argues that, given the fact the worldwide population growth rate is slowing down and is projected to eventually stabilize and begin falling, superlongevity would be unlikely to contribute to overpopulation.[99]

A Spring 2013 Pew Research poll in the United States found that 38% of Americans would want life extension treatments, and 56% would reject it. However, it also found that 68% believed most people would want it and that only 4% consider an “ideal lifespan” to be more than 120 years. The median “ideal lifespan” was 91 years of age and the majority of the public (63%) viewed medical advances aimed at prolonging life as generally good. 41% of Americans believed that radical life extension (RLE) would be good for society, while 51% said they believed it would be bad for society.[101] One possibility for why 56% of Americans claim they would reject life extension treatments may be due to the cultural perception that living longer would result in a longer period of decrepitude, and that the elderly in our current society are unhealthy.[102]

Religious people are no more likely to oppose life extension than the unaffiliated,[101] though some variation exists between religious denominations.

Most mainstream medical organizations and practitioners do not consider aging to be a disease. David Sinclair says: “Idon’t see aging as a disease, but as a collection of quite predictable diseases caused by the deterioration of the body”.[103] The two main arguments used are that aging is both inevitable and universal while diseases are not.[104] However, not everyone agrees. Harry R. Moody, Director of Academic Affairs for AARP, notes that what is normal and what is disease strongly depends on a historical context.[105] David Gems, Assistant Director of the Institute of Healthy Ageing, strongly argues that aging should be viewed as a disease.[106] In response to the universality of aging, David Gems notes that it is as misleading as arguing that Basenji are not dogs because they do not bark.[107] Because of the universality of aging he calls it a ‘special sort of disease’. Robert M. Perlman, coined the terms aging syndrome and disease complex in 1954 to describe aging.[108]

The discussion whether aging should be viewed as a disease or not has important implications. It would stimulate pharmaceutical companies to develop life extension therapies and in the United States of America, it would also increase the regulation of the anti-aging market by the FDA. Anti-aging now falls under the regulations for cosmetic medicine which are less tight than those for drugs.[107][109]

See the original post here:

Life extension – Wikipedia

Posted in Life Extension | Comments Off on Life extension – Wikipedia

Genetic Engineering | MSPCA-Angell

Posted: at 5:32 pm

The MSPCAbelieves scientists ability to clone animals, to alter the genetic makeup of an animal, and to transfer pieces of genetic material from one species to another raises serious concerns for animals and humans alike.

This pagewill explore issues related to genetic engineering, transgenic animals, and cloned animals. It will examine the implications of genetic engineering on human and animal welfare and will touch on some related moral and ethical concerns that our society has so far failed to completely address.


Problems related to the physical and psychological well-being of cloned and transgenic animals, significant ethical concerns about the direct manipulation of genetic material, and questions about the value of life itself must all be carefully weighed against the potential benefits of genetic engineering for disease research, agricultural purposes, vaccine development, pharmaceutical products, and organ transplants.

Genetic engineering is, as yet, an imperfect science that yields imperfect results.

Changes in animal growth and development brought about by genetic engineering and cloning are less predictable, more rapid, and often more debilitating than changes brought about through the traditional process of selective breeding.

This is especially apparent with cloning. Success rates are incredibly low; on average, less than 5% of cloned embryos are born and survive.

Clones are created at a great cost to animals. The clones that are successful, as well as those that do not survive and the surrogates who carry them, suffer greatly.Many of the cloned animals that do survive are plagued by severe health problems.

Offspring suffer from severe birth defects such as Large Offspring Syndrome (LOS), in which the cloned offspring are significantly larger than normal fetuses; hydrops, a typically fatal condition in which the mother or the fetus swells with fluid; respiratory distress; developmental problems; malformed organs; musculoskeletal deformities; or weakened immune systems, to name only a few.

Additionally, surrogates are subjected to repeated invasive procedures to harvest their eggs, implant embryos, or due to the offsprings birth defects surgical intervention to deliver their offspring. All of these problems occur at much higher rates than for offspring produced via traditional breeding methods.

Cloning increases existing animal welfare and environmental concerns related to animal agriculture.

In 1996, the birth of the ewe, Dolly, marked the first successful cloning of a mammal from adult cells. At the time of her birth, the researchers who created Dolly acknowledged the inefficiency of the new technology: it took 277 attempts to create this one sheep, and of these, only 29 early embryos developed, and an even smaller number of these developed into live fetuses. In the end, Dolly was the sole surviving clone. She was euthanized in 2003 at just 6 years of age, about half as old as sheep are expected to live, and with health problems more common in older sheep.

Since Dollys creation, the process of cloning has not demonstrated great improvement in efficiency or rates of success. A 2003 review of cloning in cattle found that less than 5% of cloned embryos transferred into surrogate cows survived; a 2016 study showedno noticeable increase in efficiency, with the success rate being about 1%.

Currently, research is focused on cloning for agricultural purposes. Used alone, or in concert with genetic engineering, the objective is to clone the best stock to reproduce whole herds or flocks with desired uniform characteristics of a specific trait, such as fast growth, leaner meat, or higher milk production. Cloning is often pursued to produce animals that grow faster so they can be slaughtered sooner and to raise more animals in a smaller space.

For example, transgenic fish are engineered to grow larger at a faster rate and cows injected with genetically engineered products to increase their productivity. Another example of this is the use of the genetically engineered drug, bovine growth hormone (BGH or BST) to increase milk production in dairy cows. This has also been associated with increased cases of udder disease, spontaneous abortion, lameness, and shortened lifespan. The use of BGH is controversial; many countries (such as Canada, Japan, Australia, and countries in the EU) do not allow it, and many consumers try to avoid it.A rise in transgenic animals used for agriculture will only exacerbate current animal welfare and environmental concerns with existing intensive farming operations.(For more information on farming and animal welfare, visit the MSPCAs Farm Animal Welfare page.)

Much remains unknown about thepotential environmental impacts of widespread cloning of animals. The creation of genetically identical animals leads to concerns about limited agricultural animal gene pools. The effects of creating uniform herds of animals and the resulting loss of biodiversity, have significant implications for the environment and for the ability of cloned herds to withstand diseases. This could make an impact on the entireagriculture industry and human food chain.

These issues became especiallyconcerning when, in 2008, the Federal Drug Administration not only approved the sale of meat from the offspring of cloned animals, but also did not require that it be labeled as such. There have been few published studies that examine the composition of milk, meat, or eggs from cloned animals or their progeny, including the safety of eating those products. The health problems associated with cloned animals, particularly those that appear healthy but have concealed illnesses or problems that appear unexpectedly later in life, could potentially pose risks to the safety of the food products derived from those animals.

Genetically Engineered Pets

Companion animals have also been cloned. The first cloned cat, CC, was created in 2001. CCs creation marked the beginning of the pet cloning industry, in which pet owners could pay to bank DNA from their companion dogs and cats to be cloned in the future. In 2005, the first cloned dog was created; later, the first commercially cloned dog followed at a cost of $50,000. Many consumers assume that cloning will produce a carbon copy of their beloved pet, but this is not the case. Even though the animals are genetically identical, they often do not resemble each other physically or behaviorally.

To date, the pet cloning industry has not been largely successful. However, efforts to make cloning a successful commercial venture are still being put forth.RBio (formerly RNL Bio), a Korean biotechnology company, planned to create a research center that would produce 1,000 cloned dogs annually by 2013. However, RBio, considered a black market cloner, failed to make any significant strides in itscloning endeavors and seems to have been replaced by other companies, such as South Korean-based Sooam Biotech, now the worlds leader in commercial pet cloning. Since 2006, Sooam has cloned over 800 dogs, in addition to other animals, such as cattle and pigs, for breed preservation and medical research.

While South Korean animal cloning expands, the interest in companion animal cloning in the United States continues to remain low. In 2009, the American company BioArts ceased its dog cloning services and ended its partnership with Sooam, stating in a press release that cloning procedures were still underdeveloped and that the cloning market itself was weak and unethical. Companion animal cloning causes concern not only because of the welfare issues inherent in the cloning process, but also because of its potential to contribute to pet overpopulation problem in the US, as millions of animals in shelters wait for homes.

Cloning and Medical Research

Cloning is also used to produce copies of transgenic animals that have been created to mimic certain human diseases. The transgenic animals are created, then cloned, producing a supply of animals for biomedical testing.

A 1980 U.S. Supreme Court decision to permit the patenting of a microorganism that could digest crude oil had a great impact on animal welfare and genetic engineering. Until that time, the U.S. Patent Office had prohibited the patenting of living organisms. However, following the Supreme Court decision, the Patent Office interpreted this ruling to extend to the patenting of all higher life forms, paving the way for a tremendous explosion of corporate investment in genetic engineering research.

In 1988, the first animal patent was issued to Harvard University for the Oncomouse, a transgenic mouse genetically modified to be more prone to develop cancers mimicking human disease. Since then, millions of transgenic mice have been produced. Transgenic rats, rabbits, monkeys, fish, chickens, pigs, sheep, goats, cows, horses, cats, dogs, and other animals have also been created.

Both expected and unexpected results occur in the process of inserting new genetic material into an egg cell. Defective offspring can suffer from chromosomal abnormalities that can cause cancer, fatal bleeding disorders, inability to reproduce, early uterine death, lack of ability to nurse, and such diseases as arthritis, diabetes, liver disease, and kidney disease.

The production of transgenic animals is of concern because genetic engineering is often used to create animals with diseases that cause intense suffering. Among the diseases that can be produced in genetically engineered research mice are diabetes, cancer, cystic fibrosis, sickle-cell anemia, Huntingtons disease, Alzheimers disease, and a rare but severe neurological condition called Lesch-Nyhansyndromethat causes the sufferer to self-mutilate. Animals carrying the genes for these diseases can suffer for long periods of time, both in the laboratory and while they are kept on the shelf by laboratory animal suppliers.

Another reason for the production of transgenic animals is pharming, in which sheep and goats are modified to produce pharmaceuticals in their milk. In 2009, the first drug produced by genetically engineered animals was approved by the FDA. The drug ATryn, used to prevent fatal blood clots in humans, is derived from goats into which a segment of human DNA has been inserted, causing them to produce an anticoagulant protein in their milk. This marks the first time a drug has been manufactured from a herd of animals created specifically to produce a pharmaceutical.

A company has also manufactured a drug produced in the milk of transgenic rabbits to treat a dangerous tissue swelling caused by a human protein deficiency. Yet another pharmaceutical manufacturer, PharmAnthene, was funded by the US Department of Defense to develop genetically engineered goats whose milk produces proteins used in a drug to treat nerve gas poisoning. The FDA also approved a drug whose primary proteins are also found in the milk of genetically engineered goats, who are kept at a farm in Framingham, Massachusetts. Additionally, a herd of cattle was recently developed that produces milk containing proteins that help to treat human emphysema. These animals are essentially used as pharmaceutical-production machines to manufacture only those substances they were genetically modified to produce; they are not used as part of the normal food supply chain for items such as meat or milk.

The transfer of animal tissues from one species to another raises potentially serious health issues for animals and humans alike.

Some animals are also genetically modified to produce tissues and organs to be used for human transplant purposes (xenotransplantation). Much effort is being focused in this area as the demand for human organs for transplantation far exceeds the supply, with pigs the current focus of this research. While efforts to date have been hampered by a pig protein that can cause organ rejection by the recipients immune system, efforts are underway to develop genetically modified swine with a human protein that would mitigate the chance of organ rejection.

Little is known about the ways in which diseases can be spread from one species to another, raising concerns for both animals and people, and calling into question the safety of using transgenic pigs to supply organs for human transplant purposes. Scientists have identified various viruses common in the heart, spleen, and kidneys of pigs that could infect human cells. In addition, new research is shedding light on particles called prions that, along with viruses and bacteria, may transmit fatal diseases between animals and from animals to humans.

Acknowledging the potential for transmission of viruses from animals to humans, the National Institutes of Health, a part of the U.S. Department of Health and Human Services,issued a moratorium in 2015 onxenotransplantation until the risks are better understood, ceasing funding until more research has been carried out. With the science of genetic engineering, the possibilities are endless, but so too are the risks and concerns.

Genetic engineering research has broad ethical and moral ramifications with few established societal guidelines.

While biotechnology has been quietly revolutionizing the science for decades, public debate in the United Statesover the moral, ethical, and physical effects of this research has been insufficient. To quote Colorado State University Philosopher Bernard Rollin, We cannot control technology if we do not understand it, and we cannot understand it without a careful discussion of the moral questions to which it gives rise.

Research into non-animal methods of achieving some of the same goals looks promising.

Researchers in the U.S. and elsewhere have found ways togenetically engineer cereal grains to produce human proteins. One example of this, developed in the early 2000s, is a strain of rice that can produce a human protein used to treat cystic fibrosis. Wheat, corn, and barley may also be able to be used in similar ways at dramatically lower financial and ethical costs than genetically engineering animals for this purpose.

Originally posted here:
Genetic Engineering | MSPCA-Angell

Posted in Genetic Engineering | Comments Off on Genetic Engineering | MSPCA-Angell